Advertisement

The GLOWA-Danube Climate Trends

  • Wolfram MauserEmail author
  • Thomas Marke
  • Andrea Reiter
  • Daniela Jacob
  • Swantje Preuschmann

Abstract

GLOWA-Danube, in order to simulate climate change impacts, needs meteorological drivers with high spatial and temporal resolution which reflect the temporal course of the regional climate change signal. Uncertainty in the amount and course of future climate change motivates to define and analyse the impact of a range for assumed temperature and precipitation changes. The GLOWA-Danube approach to define a range of climate change trends and their temporal courses is described. It combines results from global and regional climate models with a thorough analysis of observed climate data to define a realistic range of four climate trends and their different temporal courses until 2100. The results of the trend analysis are shown and discussed.

Keywords

GLOWA-Danube Climate change Regional climate trends REMO MM5 

References

  1. Collins M et al (2013) Section 12.3.1.3: The new concentration driven RCP scenarios, and their extensions, In: Chapter 12: Long-term climate change: projections, commitments and irreversibility. Archived 16 July 2014, pp 1045–1047, In: Stocker TF et al (ed) Climate change 2013: the physical science basis. Working Group 1 (WG1) contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5), Cambridge University Press, CambridgeGoogle Scholar
  2. IPCC (2000) Special report on emissions scenarios (Nakicenovic N, Swart R, eds). Cambridge University Press, CambridgeGoogle Scholar
  3. IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, eds). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  4. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  5. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  6. Jacob D, Göttel H, Kotlarski S, Lorenz P, Sieck K (2008) Klimaauswirkungen und Anpassung in Deutschland – phase 1: Erstellung regionaler Klimaszenarien für Deutschland. Final report of the UFOPLAN-project (Ed.: Umweltbundesamt, Dessau- Roßlau). Umweltbundesamt (Federal Environmental Protection Agency)Google Scholar
  7. Reiter A, Weidinger R, Mauser W (2012) Recent climate change at the Upper Danube – a temporal and spatial analysis of temperature and precipitation time series. Clim Change 111:665–696CrossRefGoogle Scholar
  8. Stocker TF et al (ed) (2013) Climate change 2013: the physical science basis. Working Group 1 (WG1) contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5), Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wolfram Mauser
    • 1
    Email author
  • Thomas Marke
    • 2
  • Andrea Reiter
    • 3
  • Daniela Jacob
    • 4
  • Swantje Preuschmann
    • 4
  1. 1.Department of GeographyLudwig-Maximilians-Universität München (LMU Munich)MunichGermany
  2. 2.Institute of GeographyUniversity of InnsbruckInnsbruckAustria
  3. 3.Bavarian Research Alliance GmbHMunichGermany
  4. 4.Climate Service CenterHamburgGermany

Personalised recommendations