Advertisement

Efficient Leakage Resilient Circuit Compilers

  • Marcin Andrychowicz
  • Ivan Damgård
  • Stefan Dziembowski
  • Sebastian Faust
  • Antigoni PolychroniadouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9048)

Abstract

In this paper, we revisit the problem of constructing general leakage resilient compilers that can transform any (Boolean) circuit \(C\) into a protected circuit \(C'\) computing the same functionality as \(C\), which additionally is resilient to certain classes of leakage functions. An important problem that has been neglected in most works on leakage resilient circuits is to minimize the overhead induced by the compiler. In particular, in earlier works for a circuit \(C\) of size \(s\), the transformed circuit \(C'\) has size at least \(\mathcal {O}(sk^2)\), where \(k\) is the security parameter. In this work, using techniques from secure Multi-Party Computation, we show that in important leakage models such as bounded independent leakage and leakage from weak complexity classes the size of the transformed circuit can be reduced to \(\mathcal {O}(sk)\).

Keywords

Leakage resilience Multi-party computation Split-state model \(\mathsf {AC}^{0}\) Side channel attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 146–163. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  2. 2.
    Castagnos, G., Renner, S., Zémor, G.: High-order masking by using coding theory and its application to AES. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 193–212. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Damgård, I., Pastro, V.: On the amortized complexity of zero knowledge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 62–79. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Davi, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. Cryptology ePrint Archive, Report 2009/399 (2009)Google Scholar
  7. 7.
    Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 702–721. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Annual IEEE Symposium on Foundations of Computer Science, pp. 293–302 (2008)Google Scholar
  12. 12.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: The computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Franklin, M., Yung, M.: Communication complexity of secure computation (extended abstract). In: STOC, pp. 699–710. ACM, New York (1992)Google Scholar
  14. 14.
    Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: Physical side-channel key-extraction attacks on PCs. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 242–260. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59–79. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. Tech. Rep. TR12-010, Electronic Colloquium on Computational Complexity (2012)Google Scholar
  18. 18.
    Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: How large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 400–416. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  20. 20.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks (2003). Unpublished manuscript ([19] is a revised and abbreviated version)Google Scholar
  21. 21.
    Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  22. 22.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  23. 23.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  24. 24.
    Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  25. 25.
    Miles, E., Viola, E.: Shielding circuits with groups. In: Proceedings of the 45th Annual ACM Symposium on Symposium on Theory of Computing, STOC 2013, pp. 251–260. ACM, New York (2013)Google Scholar
  26. 26.
    Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. 27.
    Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  28. 28.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  29. 29.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  30. 30.
    Rothblum, G.N.: How to compute under \({\cal {AC}}^{\sf 0}\) leakage without secure hardware. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552–569. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  31. 31.
    Schönhage, A.: Schnelle multiplikation von polynomen über körpern der charakteristik 2. Acta Informatica 7(4), 395–398 (1977)CrossRefzbMATHGoogle Scholar
  32. 32.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marcin Andrychowicz
    • 3
  • Ivan Damgård
    • 1
  • Stefan Dziembowski
    • 3
  • Sebastian Faust
    • 2
  • Antigoni Polychroniadou
    • 1
    Email author
  1. 1.Aarhus UniversityAarhusDenmark
  2. 2.EPFLLausanneSwitzerland
  3. 3.Warsaw UniversityWarsawPoland

Personalised recommendations