Advertisement

Locating a Tree in a Phylogenetic Network in Quadratic Time

  • Philippe Gambette
  • Andreas D. M. Gunawan
  • Anthony Labarre
  • Stéphane Vialette
  • Louxin Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)

Abstract

A fundamental problem in the study of phylogenetic networks is to determine whether or not a given phylogenetic network contains a given phylogenetic tree. We develop a quadratic-time algorithm for this problem for binary nearly-stable phylogenetic networks. We also show that the number of reticulations in a reticulation visible or nearly stable phylogenetic network is bounded from above by a function linear in the number of taxa.

Keywords

Longe Path Internal Vertex Phylogenetic Network Stable Network Quadratic Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)Google Scholar
  2. 2.
    Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinfo. 6(4), 552–569 (2009)CrossRefGoogle Scholar
  3. 3.
    Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. PNAS 110(46), 18566–18571 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Dagan, T., Artzy-Randrup, Y., Martin, W.: Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. PNAS 105(29), 10039–10044 (2008)CrossRefGoogle Scholar
  5. 5.
    Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. The MIT Press (2014)Google Scholar
  6. 6.
    Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press (2011)Google Scholar
  7. 7.
    van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inf. Process. Lett. 110(23), 1037–1043 (2010)CrossRefGoogle Scholar
  8. 8.
    Jenkins, P., Song, Y., Brem, R.: Genealogy-based methods for inference of historical recombination and gene flow and their application in saccharomyces cerevisiae. PLoS ONE 7(11), e46947 (2012)CrossRefGoogle Scholar
  9. 9.
    Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theor. Comput. Sci. 401, 153–164 (2008)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Marcussen, T., Jakobsen, K.S., Danihelka, J., Ballard, H.E., Blaxland, K., Brysting, A.K., Oxelman, B.: Inferring species networks from gene trees in high-polyploid north american and hawaiian violets (viola, violaceae). Syst. Biol. 61, 107–126 (2012)CrossRefGoogle Scholar
  11. 11.
    McBreen, K., Lockhart, P.J.: Reconstructing reticulate evolutionary histories of plants. Trends Plant Sci. 11(8), 103–122 (2006)CrossRefGoogle Scholar
  12. 12.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinfo. 1(1), 13–23 (2004)CrossRefGoogle Scholar
  13. 13.
    Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol. Evolut. 28(12), 719–728 (2013)CrossRefGoogle Scholar
  14. 14.
    Parida, L.: Ancestral recombinations graph: a reconstructability perspective using random-graphs framework. J. Comput. Biol. 17(10), 1345–1370 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley (2011)Google Scholar
  16. 16.
    Treangen, T.J., Rocha, E.P.: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genetics 7(1), e1001284 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comp. Biol. 8(1), 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Philippe Gambette
    • 1
  • Andreas D. M. Gunawan
    • 2
  • Anthony Labarre
    • 1
  • Stéphane Vialette
    • 1
  • Louxin Zhang
    • 2
  1. 1.Université Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPCMarne-la-valléeFrance
  2. 2.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations