Fragmentation Trees Reloaded

  • Kai DührkopEmail author
  • Sebastian Böcker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9029)


Metabolites, small molecules that are involved in cellular reactions, provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually relies on tandem mass spectrometry to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. Fragmentation trees have become a powerful tool for the interpretation of tandem mass spectrometry data of small molecules. These trees are found by combinatorial optimization, and aim at explaining the experimental data via fragmentation cascades. To obtain biochemically meaningful results requires an elaborate optimization function.

We present a new scoring for computing fragmentation trees, transforming the combinatorial optimization into a maximum a posteriori estimator. We demonstrate the superiority of the new scoring for two tasks: Both for the de novo identification of molecular formulas of unknown compounds, and for searching a database for structurally similar compounds, our methods performs significantly better than the previous scoring, as well as other methods for this task. Our method can expedite the workflow for untargeted metabolomics, allowing researchers to investigate unknowns using automated computational methods.


Molecular Formula Tandem Mass Spectrum Fragmentation Spectrum Noise Peak Untargeted Metabolomics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, F., Greiner, R., Wishart, D.: Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11(1), 98–110 (2015). doi: 10.1007/s11306-014-0676-4 CrossRefGoogle Scholar
  2. 2.
    Baker, M.: Metabolomics: From small molecules to big ideas. Nat. Methods 8, 117–121 (2011)CrossRefGoogle Scholar
  3. 3.
    Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)CrossRefGoogle Scholar
  4. 4.
    Böcker, S., Mäkinen, V.: Combinatorial approaches for mass spectra recalibration. IEEE/ACM Trans. Comput. Biology Bioinform. 5(1), 91–100 (2008)CrossRefGoogle Scholar
  5. 5.
    Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008) Proc. of European Conference on Computational Biology (ECCB 2008)Google Scholar
  6. 6.
    Cooper, M.A., Shlaes, D.: Fix the antibiotics pipeline. Nature 472(7341), 32 (2011)CrossRefGoogle Scholar
  7. 7.
    Demuth, W., Karlovits, M., Varmuza, K.: Spectral similarity versus structural similarity: Mass spectrometry. Anal. Chim. Acta. 516(1–2), 75–85 (2004)CrossRefGoogle Scholar
  8. 8.
    Dührkop, K., Hufsky, F., Böcker, S.: Molecular formula identification using isotope pattern analysis and calculation of fragmentation trees. Mass Spectrom 3(special issue 2), S0037 (2014)CrossRefGoogle Scholar
  9. 9.
    Gerlich, M., Neumann, S.: MetFusion: integration of compound identification strategies. J. Mass Spectrom 48(3), 291–298 (2013)CrossRefGoogle Scholar
  10. 10.
    Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction via machine learning. Bioinformatics, 28(18), 2333–2341 (2012) Proc. of European Conference on Computational Biology (ECCB 2012)Google Scholar
  11. 11.
    Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka, T.: MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom 45(7), 703–714 (2010)CrossRefGoogle Scholar
  12. 12.
    Hufsky, F., Scheubert, K., Böcker, S.: Computational mass spectrometry for small molecule fragmentation. Trends Anal. Chem. 53, 41–48 (2014)CrossRefGoogle Scholar
  13. 13.
    Hufsky, F., Scheubert, K., Böcker, S.: New kids on the block: Novel informatics methods for natural product discovery. Nat. Prod. Rep. 31(6), 807–817 (2014)CrossRefGoogle Scholar
  14. 14.
    Jaitly, N., Monroe, M.E., Petyuk, V.A., Clauss, T.R.W., Adkins, J.N., Smith, R.D.: Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal. Chem. 78(21), 7397–7409 (2006)CrossRefGoogle Scholar
  15. 15.
    Kind, T., Fiehn, O.: Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105 (2007)CrossRefGoogle Scholar
  16. 16.
    Menikarachchi, L.C., Cawley, S., Hill, D.W., Hall, L.M., Hall, L., Lai, S., Wilder, J., Grant, D.F.: MolFind: A software package enabling HPLC/MS-based identification of unknown chemical structures. Anal. Chem. 84(21), 9388–9394 (2012)Google Scholar
  17. 17.
    Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH-Commun. Math. Co. 65, 259–290 (2011)Google Scholar
  18. 18.
    Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., Miyashita, M., Nakamura, T., Tanaka, K., Yamamoto, A.: Winners of CASMI2013: Automated tools and challenge data. Mass Spectrom 3(special issue 2), S0039 (2014)CrossRefGoogle Scholar
  19. 19.
    Patti, G.J., Yanes, O., Siuzdak, G.: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012)CrossRefGoogle Scholar
  20. 20.
    Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal. Chem. 84(10), 4396–4403 (2012)CrossRefGoogle Scholar
  21. 21.
    Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7), 3417–3426 (2012)CrossRefGoogle Scholar
  22. 22.
    Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4), 1243–1251 (2011)CrossRefGoogle Scholar
  23. 23.
    Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in practice. J. Comput. Biol. 20(4), 1–11 (2013)MathSciNetGoogle Scholar
  24. 24.
    Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T., Reijmers, T.H.: Elemental composition determination based on MS\(^n\). Bioinformatics 27, 2376–2383 (2011)CrossRefGoogle Scholar
  25. 25.
    Scheubert, K., Hufsky, F., Böcker, S.: Computational mass spectrometry for small molecules. J. Cheminform. 5, 12 (2013)CrossRefGoogle Scholar
  26. 26.
    Senior, J.: Partitions and their representative graphs. Amer. J. Math. 73(3), 663–689 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics 30(12), i157–i164 (2014) Proc. of Intelligent Systems for Molecular Biology (ISMB 2014)Google Scholar
  28. 28.
    Stravs, M.A., Schymanski, E.L., Singer, H.P., Hollender, J.: Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom 48(1), 89–99 (2013)CrossRefGoogle Scholar
  29. 29.
    Thaker, M.N., Wang, W., Spanogiannopoulos, P., Waglechner, N., King, A.M., Medina, R., Wright, G.D.: Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31(10), 922–927 (2013)CrossRefGoogle Scholar
  30. 30.
    Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau, D.D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J.A., Lim, E., Sobsey, C.A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., Souza, A.D., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H.J., Forsythe, I.: HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009)CrossRefGoogle Scholar
  31. 31.
    Wolf, S., Schmidt, S., Müller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010)CrossRefGoogle Scholar
  32. 32.
    Yanes, O., Clark, J., Wong, D.M., Patti, G.J., Sánchez-Ruiz, A., Benton, H.P., Trauger, S.A., Desponts, C., Ding, S., Siuzdak, G.: Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6(6), 411–417 (2010)CrossRefGoogle Scholar
  33. 33.
    Zubarev, R., Mann, M.: On the proper use of mass accuracy in proteomics. Mol. Cell Proteomics 6(3), 377–381 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Chair for BioinformaticsFriedrich-Schiller-UniversityJenaGermany

Personalised recommendations