Skip to main content

Fragmentation Trees Reloaded

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

Metabolites, small molecules that are involved in cellular reactions, provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually relies on tandem mass spectrometry to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. Fragmentation trees have become a powerful tool for the interpretation of tandem mass spectrometry data of small molecules. These trees are found by combinatorial optimization, and aim at explaining the experimental data via fragmentation cascades. To obtain biochemically meaningful results requires an elaborate optimization function.

We present a new scoring for computing fragmentation trees, transforming the combinatorial optimization into a maximum a posteriori estimator. We demonstrate the superiority of the new scoring for two tasks: Both for the de novo identification of molecular formulas of unknown compounds, and for searching a database for structurally similar compounds, our methods performs significantly better than the previous scoring, as well as other methods for this task. Our method can expedite the workflow for untargeted metabolomics, allowing researchers to investigate unknowns using automated computational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F., Greiner, R., Wishart, D.: Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11(1), 98–110 (2015). doi:10.1007/s11306-014-0676-4

    Article  Google Scholar 

  2. Baker, M.: Metabolomics: From small molecules to big ideas. Nat. Methods 8, 117–121 (2011)

    Article  Google Scholar 

  3. Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)

    Article  Google Scholar 

  4. Böcker, S., Mäkinen, V.: Combinatorial approaches for mass spectra recalibration. IEEE/ACM Trans. Comput. Biology Bioinform. 5(1), 91–100 (2008)

    Article  Google Scholar 

  5. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008) Proc. of European Conference on Computational Biology (ECCB 2008)

    Google Scholar 

  6. Cooper, M.A., Shlaes, D.: Fix the antibiotics pipeline. Nature 472(7341), 32 (2011)

    Article  Google Scholar 

  7. Demuth, W., Karlovits, M., Varmuza, K.: Spectral similarity versus structural similarity: Mass spectrometry. Anal. Chim. Acta. 516(1–2), 75–85 (2004)

    Article  Google Scholar 

  8. Dührkop, K., Hufsky, F., Böcker, S.: Molecular formula identification using isotope pattern analysis and calculation of fragmentation trees. Mass Spectrom 3(special issue 2), S0037 (2014)

    Article  Google Scholar 

  9. Gerlich, M., Neumann, S.: MetFusion: integration of compound identification strategies. J. Mass Spectrom 48(3), 291–298 (2013)

    Article  Google Scholar 

  10. Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction via machine learning. Bioinformatics, 28(18), 2333–2341 (2012) Proc. of European Conference on Computational Biology (ECCB 2012)

    Google Scholar 

  11. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka, T.: MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom 45(7), 703–714 (2010)

    Article  Google Scholar 

  12. Hufsky, F., Scheubert, K., Böcker, S.: Computational mass spectrometry for small molecule fragmentation. Trends Anal. Chem. 53, 41–48 (2014)

    Article  Google Scholar 

  13. Hufsky, F., Scheubert, K., Böcker, S.: New kids on the block: Novel informatics methods for natural product discovery. Nat. Prod. Rep. 31(6), 807–817 (2014)

    Article  Google Scholar 

  14. Jaitly, N., Monroe, M.E., Petyuk, V.A., Clauss, T.R.W., Adkins, J.N., Smith, R.D.: Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal. Chem. 78(21), 7397–7409 (2006)

    Article  Google Scholar 

  15. Kind, T., Fiehn, O.: Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105 (2007)

    Article  Google Scholar 

  16. Menikarachchi, L.C., Cawley, S., Hill, D.W., Hall, L.M., Hall, L., Lai, S., Wilder, J., Grant, D.F.: MolFind: A software package enabling HPLC/MS-based identification of unknown chemical structures. Anal. Chem. 84(21), 9388–9394 (2012)

    Google Scholar 

  17. Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH-Commun. Math. Co. 65, 259–290 (2011)

    Google Scholar 

  18. Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., Miyashita, M., Nakamura, T., Tanaka, K., Yamamoto, A.: Winners of CASMI2013: Automated tools and challenge data. Mass Spectrom 3(special issue 2), S0039 (2014)

    Article  Google Scholar 

  19. Patti, G.J., Yanes, O., Siuzdak, G.: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012)

    Article  Google Scholar 

  20. Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal. Chem. 84(10), 4396–4403 (2012)

    Article  Google Scholar 

  21. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7), 3417–3426 (2012)

    Article  Google Scholar 

  22. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4), 1243–1251 (2011)

    Article  Google Scholar 

  23. Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in practice. J. Comput. Biol. 20(4), 1–11 (2013)

    MathSciNet  Google Scholar 

  24. Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T., Reijmers, T.H.: Elemental composition determination based on MS\(^n\). Bioinformatics 27, 2376–2383 (2011)

    Article  Google Scholar 

  25. Scheubert, K., Hufsky, F., Böcker, S.: Computational mass spectrometry for small molecules. J. Cheminform. 5, 12 (2013)

    Article  Google Scholar 

  26. Senior, J.: Partitions and their representative graphs. Amer. J. Math. 73(3), 663–689 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics 30(12), i157–i164 (2014) Proc. of Intelligent Systems for Molecular Biology (ISMB 2014)

    Google Scholar 

  28. Stravs, M.A., Schymanski, E.L., Singer, H.P., Hollender, J.: Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom 48(1), 89–99 (2013)

    Article  Google Scholar 

  29. Thaker, M.N., Wang, W., Spanogiannopoulos, P., Waglechner, N., King, A.M., Medina, R., Wright, G.D.: Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31(10), 922–927 (2013)

    Article  Google Scholar 

  30. Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau, D.D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J.A., Lim, E., Sobsey, C.A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., Souza, A.D., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H.J., Forsythe, I.: HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009)

    Article  Google Scholar 

  31. Wolf, S., Schmidt, S., Müller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010)

    Article  Google Scholar 

  32. Yanes, O., Clark, J., Wong, D.M., Patti, G.J., Sánchez-Ruiz, A., Benton, H.P., Trauger, S.A., Desponts, C., Ding, S., Siuzdak, G.: Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6(6), 411–417 (2010)

    Article  Google Scholar 

  33. Zubarev, R., Mann, M.: On the proper use of mass accuracy in proteomics. Mol. Cell Proteomics 6(3), 377–381 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Dührkop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dührkop, K., Böcker, S. (2015). Fragmentation Trees Reloaded. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics