Fragmentation Trees Reloaded
- 3 Citations
- 2.4k Downloads
Abstract
Metabolites, small molecules that are involved in cellular reactions, provide a direct functional signature of cellular state. Untargeted metabolomics experiments usually relies on tandem mass spectrometry to identify the thousands of compounds in a biological sample. Today, the vast majority of metabolites remain unknown. Fragmentation trees have become a powerful tool for the interpretation of tandem mass spectrometry data of small molecules. These trees are found by combinatorial optimization, and aim at explaining the experimental data via fragmentation cascades. To obtain biochemically meaningful results requires an elaborate optimization function.
We present a new scoring for computing fragmentation trees, transforming the combinatorial optimization into a maximum a posteriori estimator. We demonstrate the superiority of the new scoring for two tasks: Both for the de novo identification of molecular formulas of unknown compounds, and for searching a database for structurally similar compounds, our methods performs significantly better than the previous scoring, as well as other methods for this task. Our method can expedite the workflow for untargeted metabolomics, allowing researchers to investigate unknowns using automated computational methods.
Keywords
Molecular Formula Tandem Mass Spectrum Fragmentation Spectrum Noise Peak Untargeted MetabolomicsPreview
Unable to display preview. Download preview PDF.
References
- 1.Allen, F., Greiner, R., Wishart, D.: Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11(1), 98–110 (2015). doi: 10.1007/s11306-014-0676-4 CrossRefGoogle Scholar
- 2.Baker, M.: Metabolomics: From small molecules to big ideas. Nat. Methods 8, 117–121 (2011)CrossRefGoogle Scholar
- 3.Böcker, S., Letzel, M., Lipták, Z., Pervukhin, A.: SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 25(2), 218–224 (2009)CrossRefGoogle Scholar
- 4.Böcker, S., Mäkinen, V.: Combinatorial approaches for mass spectra recalibration. IEEE/ACM Trans. Comput. Biology Bioinform. 5(1), 91–100 (2008)CrossRefGoogle Scholar
- 5.Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008) Proc. of European Conference on Computational Biology (ECCB 2008)Google Scholar
- 6.Cooper, M.A., Shlaes, D.: Fix the antibiotics pipeline. Nature 472(7341), 32 (2011)CrossRefGoogle Scholar
- 7.Demuth, W., Karlovits, M., Varmuza, K.: Spectral similarity versus structural similarity: Mass spectrometry. Anal. Chim. Acta. 516(1–2), 75–85 (2004)CrossRefGoogle Scholar
- 8.Dührkop, K., Hufsky, F., Böcker, S.: Molecular formula identification using isotope pattern analysis and calculation of fragmentation trees. Mass Spectrom 3(special issue 2), S0037 (2014)CrossRefGoogle Scholar
- 9.Gerlich, M., Neumann, S.: MetFusion: integration of compound identification strategies. J. Mass Spectrom 48(3), 291–298 (2013)CrossRefGoogle Scholar
- 10.Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction via machine learning. Bioinformatics, 28(18), 2333–2341 (2012) Proc. of European Conference on Computational Biology (ECCB 2012)Google Scholar
- 11.Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., Nishioka, T.: MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom 45(7), 703–714 (2010)CrossRefGoogle Scholar
- 12.Hufsky, F., Scheubert, K., Böcker, S.: Computational mass spectrometry for small molecule fragmentation. Trends Anal. Chem. 53, 41–48 (2014)CrossRefGoogle Scholar
- 13.Hufsky, F., Scheubert, K., Böcker, S.: New kids on the block: Novel informatics methods for natural product discovery. Nat. Prod. Rep. 31(6), 807–817 (2014)CrossRefGoogle Scholar
- 14.Jaitly, N., Monroe, M.E., Petyuk, V.A., Clauss, T.R.W., Adkins, J.N., Smith, R.D.: Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Anal. Chem. 78(21), 7397–7409 (2006)CrossRefGoogle Scholar
- 15.Kind, T., Fiehn, O.: Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8, 105 (2007)CrossRefGoogle Scholar
- 16.Menikarachchi, L.C., Cawley, S., Hill, D.W., Hall, L.M., Hall, L., Lai, S., Wilder, J., Grant, D.F.: MolFind: A software package enabling HPLC/MS-based identification of unknown chemical structures. Anal. Chem. 84(21), 9388–9394 (2012)Google Scholar
- 17.Meringer, M., Reinker, S., Zhang, J., Muller, A.: MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH-Commun. Math. Co. 65, 259–290 (2011)Google Scholar
- 18.Nishioka, T., Kasama, T., Kinumi, T., Makabe, H., Matsuda, F., Miura, D., Miyashita, M., Nakamura, T., Tanaka, K., Yamamoto, A.: Winners of CASMI2013: Automated tools and challenge data. Mass Spectrom 3(special issue 2), S0039 (2014)CrossRefGoogle Scholar
- 19.Patti, G.J., Yanes, O., Siuzdak, G.: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012)CrossRefGoogle Scholar
- 20.Pluskal, T., Uehara, T., Yanagida, M.: Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, MS/MS fragmentation, heuristic rules, and isotope pattern matching. Anal. Chem. 84(10), 4396–4403 (2012)CrossRefGoogle Scholar
- 21.Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7), 3417–3426 (2012)CrossRefGoogle Scholar
- 22.Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4), 1243–1251 (2011)CrossRefGoogle Scholar
- 23.Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in practice. J. Comput. Biol. 20(4), 1–11 (2013)MathSciNetGoogle Scholar
- 24.Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T., Reijmers, T.H.: Elemental composition determination based on MS\(^n\). Bioinformatics 27, 2376–2383 (2011)CrossRefGoogle Scholar
- 25.Scheubert, K., Hufsky, F., Böcker, S.: Computational mass spectrometry for small molecules. J. Cheminform. 5, 12 (2013)CrossRefGoogle Scholar
- 26.Senior, J.: Partitions and their representative graphs. Amer. J. Math. 73(3), 663–689 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
- 27.Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics 30(12), i157–i164 (2014) Proc. of Intelligent Systems for Molecular Biology (ISMB 2014)Google Scholar
- 28.Stravs, M.A., Schymanski, E.L., Singer, H.P., Hollender, J.: Automatic recalibration and processing of tandem mass spectra using formula annotation. J. Mass Spectrom 48(1), 89–99 (2013)CrossRefGoogle Scholar
- 29.Thaker, M.N., Wang, W., Spanogiannopoulos, P., Waglechner, N., King, A.M., Medina, R., Wright, G.D.: Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31(10), 922–927 (2013)CrossRefGoogle Scholar
- 30.Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau, D.D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J.A., Lim, E., Sobsey, C.A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., Souza, A.D., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H.J., Forsythe, I.: HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610 (2009)CrossRefGoogle Scholar
- 31.Wolf, S., Schmidt, S., Müller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010)CrossRefGoogle Scholar
- 32.Yanes, O., Clark, J., Wong, D.M., Patti, G.J., Sánchez-Ruiz, A., Benton, H.P., Trauger, S.A., Desponts, C., Ding, S., Siuzdak, G.: Metabolic oxidation regulates embryonic stem cell differentiation. Nat. Chem. Biol. 6(6), 411–417 (2010)CrossRefGoogle Scholar
- 33.Zubarev, R., Mann, M.: On the proper use of mass accuracy in proteomics. Mol. Cell Proteomics 6(3), 377–381 (2007)CrossRefGoogle Scholar