Part-Based RDF for Direction Classification of Pedestrians, and a Benchmark

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9009)


This paper proposes a new benchmark dataset for pedestrian body-direction classification, proposes a new framework for intra-class classification by directly aiming at pedestrian body-direction classification, shows that the proposed framework outperforms a state-of-the-art method,and it also proposes the use of DCT-HOG features (by combining a discrete cosine transform with the histogram of oriented gradients) as a novel approach for defining a random decision forest.


  1. 1.
    Andriluka, M., Roth, S., Schiele, B.: Monocular 3D pose estimation and tracking by detection. In: CVPR, pp. 623–630 (2010)Google Scholar
  2. 2.
    Baltieri, D., Vezzani, R., Cucchiara, R.: People orientation recognition by mixtures of wrapped distributions on random trees. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 270–283. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Chen, C., Heili, A., Odobez, J.-M.: Combined estimation of location and body pose in surveillance video. In: AVSS, pp. 5–10 (2011)Google Scholar
  4. 4.
    Chen, C., Heili, A., Odobez, J.-M.: A joint estimation of head and body orientation cues in surveillance video. In: ICCV Workshops, pp. 860–867 (2011)Google Scholar
  5. 5.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7, 81–227 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  7. 7.
    Diego, T., Spera, M., Cristani, M., Murino, V.: Characterizing humans on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1972–1984 (2013)CrossRefGoogle Scholar
  8. 8.
    Dollar, P., Zitnick, L.C.: Structured forests for fast edge detection. In: ICCV (2013)Google Scholar
  9. 9.
    Enzweiler, M., Gavrila, D.M.: Integrated pedestrian classification and orientation estimation. In: CVPR, pp. 982–989 (2010)Google Scholar
  10. 10.
    Ess, A., Leibe, B., Gool, L.: Depth and appearance for mobile scene analysis (2014). aess/iccv2007/
  11. 11.
    Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR, pp. 1022–1029 (2009)Google Scholar
  12. 12.
    Gandhi, T., Trivedi, M.M.: Image based estimation of pedestrian orientation for improving path prediction. In: IEEE IV, pp. 506–511 (2008)Google Scholar
  13. 13.
    Gavrila, D.M.: (2014).
  14. 14.
    Goto, K., Kidono, K., Kimura, Y., Naito, T.: Pedestrian detection and direction estimation by cascade detector with multi-classifiers utilizing feature interaction descriptor. In: IEEE IV, pp. 224–229 (2011)Google Scholar
  15. 15.
    Marin, J., Vazquez, D., Lopez, A.M., Amores, J., Leibe, B.: Random forests of local experts for pedestrian detection. In: ICCV, pp. 2592–2599 (2013)Google Scholar
  16. 16.
    Marin-Jimenez, M.J., Zisserman, A., Eichner, M., Ferrari, V.: Detecting people looking at each other in videos. Int. J. Comput. Vis. 106(3), 282–296 (2014)CrossRefGoogle Scholar
  17. 17.
    Peter, K., Bulo, S.R., Bischof, H., Pelillo, M.: Structured class-labels in random forests for semantic image labelling. In: ICCV, pp. 2190–2197 (2011)Google Scholar
  18. 18.
    Piérard, S., Van Droogenbroeck, M.: Estimation of human orientation based on silhouettes and machine learning principles. In: ICPRAM (2012)Google Scholar
  19. 19.
    Rosenhahn, B., Klette, R., Metaxas, D. (eds.): Human Motion. Springer, Dordrecht (2008) Google Scholar
  20. 20.
    Samuel, S., Wohlhart, P., Leistner, C., Saffari, A., Roth, P.M., Bischof, H.: Alternating decision forests. In: CVPR, pp. 508–515 (2013)Google Scholar
  21. 21.
    Samuel, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Alternating regression forests for object detection and pose estimation. In: ICCV, pp. 417–424 (2013)Google Scholar
  22. 22.
    Schneider, N., Gavrila, D.M.: Pedestrian path prediction with recursive bayesian filters: a comparative study. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 174–183. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    Shimizu, H., Poggio, T.: Direction estimation of pedestrian from multiple still images. In: IEEE IV, pp. 596–600 (2004)Google Scholar
  24. 24.
    Tao, J., Klette, R.: Integrated pedestrian and direction classification using a random decision forest. In: ICCV Workshop, pp. 230–237 (2013)Google Scholar
  25. 25.
    Yao, A., Gall, J., Gool, L.V.: A Hough transform-based voting framework for action recognition. In: CVPR, pp. 2061–2068 (2010)Google Scholar
  26. 26.
    Zhao, G., Takafumi, M., Shoji, K., Kenji, M.: Video based estimation of pedestrian walking direction for pedestrian protection system. J. Electron. (China) 29, 72–81 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The .enpeda.. ProjectTamaki Campus, The University of AucklandAucklandNew Zealand

Personalised recommendations