Advertisement

On the Choice of Tensor Estimation for Corner Detection, Optical Flow and Denoising

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9009)

Abstract

Many image processing methods such as corner detection, optical flow and iterative enhancement make use of image tensors. Generally, these tensors are estimated using the structure tensor. In this work we show that the gradient energy tensor can be used as an alternative to the structure tensor in several cases. We apply the gradient energy tensor to common image problem applications such as corner detection, optical flow and image enhancement. Our experimental results suggest that the gradient energy tensor enables real-time tensor-based image enhancement using the graphical processing unit (GPU) and we obtain 40 % increase of frame rate without loss of image quality.

Keywords

Graphical Processing Unit Optical Flow Shared Memory Image Enhancement Structure Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research has received funding from the Swedish Research Council through grants for the projects Visualization-adaptive Iterative Denoising of Images (VIDI) and Extended Target Tracking (ETT), within the Linnaeus environment CADICS and the excellence network ELLIIT.

References

  1. 1.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: ISPRS Intercommission, Workshop, Interlaken, pp. 149–155 (1987)Google Scholar
  2. 2.
    Bigun, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the IEEE First ICCV, pp. 433–438 (1987)Google Scholar
  3. 3.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  4. 4.
    Shi, J., Tomasi, C.: Good features to track. In: CVPR 1994, pp. 593–600 (1994)Google Scholar
  5. 5.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2. IJCAI 1981, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)Google Scholar
  6. 6.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)MATHGoogle Scholar
  7. 7.
    Felsberg, M., Köthe, U.: GET: the connection between monogenic scale-space and gaussian derivatives. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 192–203. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer international series in engineering and computer science: Robotics: Vision, manipulation and sensors. Springer, New York (1993) MATHGoogle Scholar
  9. 9.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A Database and Evaluation Methodology for Optical Flow. Int. J. Comput. Vis. 92, 1–31 (2011)CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)CrossRefGoogle Scholar
  11. 11.
    Bovik, A.C., Maragos, P.: Conditions for positivity of an energy operator. IEEE Trans. Signal Process. 42, 469–471 (1994)CrossRefGoogle Scholar
  12. 12.
    Granlund, G.H., Knutsson, H.: Signal processing for computer vision. Kluwer, New York (1995) CrossRefGoogle Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans.Pattern Anal. Mach. Intell. 27, 1615–1630 (2005)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K.: Implementation (2014). http://www.robots.ox.ac.uk/~vgg/research/affine
  15. 15.
    Tomasi, C., Kanade., T.: Detection and Tracking of Point Features. Technical report, Carnegie Mellon University Technical Report CMU-CS-91-132 (1991)Google Scholar
  16. 16.
    Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR2010, pp. 2432–2439 (2010)Google Scholar
  17. 17.
    Scherzer, O., Weickert, J.: Relations Between Regularization and Diffusion Filtering. J. Math. Imag. Vis. 12, 43–63 (2000)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Podlozhnyuk, V.: Image convolution with CUDA, NVIDIA Corporation white paper, v1.0 (2007)Google Scholar
  19. 19.
    Olmos, A., Kingdom, F.A.A.: A biologically inspired algorithm for the recovery of shading and reflectance images. Percept. 33, 1463–1473 (2004)CrossRefGoogle Scholar
  20. 20.
    Felsberg, M.: Autocorrelation-Driven Diffusion Filtering. IEEE Trans. Image Process. 20, 1797–1806 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Computer Vision LaboratoryLinköping UniversityLinköpingSweden
  2. 2.Center for Medical Image Science and Visualization (CMIV)Linköping UniversityLinköpingSweden

Personalised recommendations