Large-Scale Indoor/Outdoor Image Classification via Expert Decision Fusion (EDF)

  • Chen ChenEmail author
  • Yuzhuo RenEmail author
  • C.-C. Jay KuoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9008)


In this work, we propose an Expert Decision Fusion (EDF) system to tackle the large-scale indoor/outdoor image classification problem using two key ideas, namely, data grouping and decision stacking. By data grouping, we partition the entire data space into multiple disjoint sub-spaces so that a more accurate prediction model can be trained in each sub-space. After data grouping, the EDF system integrates soft decisions from multiple classifiers (called experts here) through stacking so that multiple experts can compensate each other’s weakness. The EDF system offers more accurate and robust classification performance since it can handle data diversity effectively while benefiting from data abundance in large-scale datasets. The advantages of data grouping and decision stacking are explained and demonstrated in detail. We conduct experiments on the SUN dataset and show that the EDF system outperforms all existing methods by a significant margin with a correct classification rate of 91 %.


Correct Classification Rate Linear Support Vector Machine Scene Classification Outdoor Scene Soft Decision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)Google Scholar
  3. 3.
    Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Conference Computer Vision and Pattern Recognition (CVPR) (2009)Google Scholar
  4. 4.
    Li, L.J., Su, H., Xing, E.P., Li, F.F.: Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: NIPS, vol. 2, p. 5 (2010)Google Scholar
  5. 5.
    Wu, J., Rehg, J.M.: Centrist: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1489–1501 (2011)CrossRefGoogle Scholar
  6. 6.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.: Content-based hierarchical classification of vacation images. In: IEEE International Conference on Multimedia Computing and Systems, 1999, vol. 1, pp. 518–523. IEEE (1999)Google Scholar
  7. 7.
    Lim, J.H., Jin, J.S.: A structured learning framework for content-based image indexing and visual query. Multimed. Syst. 10, 317–331 (2005)CrossRefGoogle Scholar
  8. 8.
    Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. 9.
    Vailaya, A., Jain, A., Zhang, H.J.: On image classification: City images vs. landscapes. Pattern Recogn. 31, 1921–1935 (1998)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Li, M., Zhang, H.J.: Boosting image orientation detection with indoor vs. outdoor classification. In: Sixth IEEE Workshop on Applications of Computer Vision, 2002, (WACV 2002), Proceedings, pp. 95–99. IEEE (2002)Google Scholar
  11. 11.
    Battiato, S., Curti, S., La Cascia, M., Tortora, M., Scordato, E.: Depth map generation by image classification. Proc. SPIE 5302, 95–104 (2004)CrossRefGoogle Scholar
  12. 12.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving color constancy using indoor-outdoor image classification. IEEE Trans. Image Process. 17, 2381–2392 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37, 1757–1771 (2004)CrossRefGoogle Scholar
  14. 14.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.J.: Content-based hierarchical classification of vacation images. IEEE Int. Conf. Multimed. Comput. Syst. 1, 518–523 (1999)Google Scholar
  15. 15.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 2169–2178 (2006)Google Scholar
  16. 16.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput. Vis. 72, 133–157 (2007)CrossRefGoogle Scholar
  17. 17.
    Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comput. Vis. 87, 316–336 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image collections. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1957–1964. IEEE (2009)Google Scholar
  19. 19.
    Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Content-Based Access of Image and Video Database, pp. 42–51. IEEE (1998)Google Scholar
  20. 20.
    Vailaya, A., Figueiredo, M.A., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE Trans. Image Process. 10, 117–130 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: 16th International Conference on Pattern Recognition, Proceedings, vol. 4, pp. 146–149 (2002)Google Scholar
  22. 22.
    Pavlopoulou, C., Yu, S.: Indoor-outdoor classification with human accuracies: Image or edge gist? In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 41–47 (2010)Google Scholar
  23. 23.
    Kim, W., Park, J., Kim, C.: A novel method for efficient indoor-outdoor image classification. J. Sig. Process. Syst. 61, 251–258 (2010)CrossRefGoogle Scholar
  24. 24.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)Google Scholar
  25. 25.
    Luo, J., Savakis, A.: Indoor vs outdoor classification of consumer photographs using low-level and semantic features. In: 2001 International Conference on Image Processing, 2001, Proceedings, vol. 2, pp. 745–748 (2001)Google Scholar
  26. 26.
    Kane, M.J., Savakis, A.: Bayesian network structure learning and inference in indoor vs. outdoor image classification. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004, ICPR 2004, vol. 2, pp. 479–482. IEEE (2004)Google Scholar
  27. 27.
    Traherne, M., Singh, S.: An integrated approach to automatic indoor outdoor scene classification in digital images. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 511–516. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  28. 28.
    Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  29. 29.
    Payne, A., Singh, S.: Indoor vs. outdoor scene classification in digital photographs. Pattern Recogn. 38, 1533–1545 (2005)CrossRefGoogle Scholar
  30. 30.
    Payne, A., Singh, S.: A benchmark for indoor/outdoor scene classification. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 711–718. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  31. 31.
    Hu, G.H., Bu, J.J., Chen, C.: A novel bayesian framework for indoor-outdoor image classification. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3028–3032. IEEE (2003)Google Scholar
  32. 32.
    Efimov, S., Nefyodov, A., Rychagov, M.: Block-based image exposure assessment and indoor/outdoor classification. In: Proceedings of 17th Conference on Computer Graphics GraphiCon (2007)Google Scholar
  33. 33.
    Tao, L., Kim, Y.H., Kim, Y.T.: An efficient neural network based indoor-outdoor scene classification algorithm. In: 2010 Digest of Technical Papers International Conference Consumer Electronics (ICCE), pp. 317–318. IEEE (2010)Google Scholar
  34. 34.
    Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)CrossRefGoogle Scholar
  35. 35.
    Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep architectures. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2133–2136. IEEE (2012)Google Scholar
  36. 36.
    Džeroski, S., Ženko, B.: Is combining classifiers with stacking better than selecting the best one? Mach. Learn> 54, 255–273 (2004)CrossRefzbMATHGoogle Scholar
  37. 37.
    Ohta, Y.I., Kanade, T., Sakai, T.: Color information for region segmentation. Comput. Graph. Image Process. 13, 222–241 (1980)CrossRefGoogle Scholar
  38. 38.
    Mao, J., Jain, A.K.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn. 25, 173–188 (1992)CrossRefGoogle Scholar
  39. 39.
    Daubechies, I., et al.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  40. 40.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)CrossRefzbMATHGoogle Scholar
  41. 41.
    Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  42. 42.
    Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)Google Scholar
  43. 43.
    Gupta, L., Pathangay, V., Patra, A., Dyana, A., Das, S.: Indoor versus outdoor scene classification using probabilistic neural network. EURASIP J. Appl. Sig. Process. 2007, 123–123 (2007)Google Scholar
  44. 44.
    Johnson, J.B.: Thermal agitation of electricity in conductors. Phys. Rev. 32, 97 (1928)CrossRefGoogle Scholar
  45. 45.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998, pp. 839–846. IEEE (1998)Google Scholar
  46. 46.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011)CrossRefGoogle Scholar
  47. 47.
    Iversen, G.R., Norpoth, H.: Analysis of Variance. Sage, Newbury Park (1987)Google Scholar
  48. 48.
    Lomax, R.G., Hahs-Vaughn, D.L.: Statistical Concepts: A Second Course. Routledge, New York (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations