Advertisement

A Comparative Study of GPU-Accelerated Multi-view Sequential Reconstruction Triangulation Methods for Large-Scale Scenes

  • Jason Mak
  • Mauricio Hess-Flores
  • Shawn Recker
  • John D. Owens
  • Kenneth I. Joy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9008)

Abstract

The angular error-based triangulation method and the parallax path method are both high-performance methods for large-scale multi-view sequential reconstruction that can be parallelized on the GPU. We map parallax paths to the GPU and test its performance and accuracy as a triangulation method for the first time. To this end, we compare it with the angular method on the GPU for both performance and accuracy. Furthermore, we improve the recovery of path scales and perform more extensive analysis and testing compared with the original parallax paths method. Although parallax paths requires sequential and piecewise-planar camera positions, in such scenarios, we can achieve a speedup of up to 14x over angular triangulation, while maintaining comparable accuracy.

Keywords

Feature Track Locus Line Triangulation Method Reprojection Error Reconstruction Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hess-Flores, M., Duchaineau, M.A., Joy, K.I.: Sequential reconstruction segment-wise feature track and structure updating based on parallax paths. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 636–649. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Recker, S., Hess-Flores, M., Joy, K.I.: Statistical angular error-based triangulation for efficient and accurate multi-view scene reconstruction. In: Workshop on the Applications of Computer Vision (WACV), pp. 68–75 (2013)Google Scholar
  3. 3.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528 (2006)Google Scholar
  4. 4.
    Strecha, C., von Hansen, W., Gool, L.J.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  5. 5.
    Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a hand-held camera. Int. J. Comput. Vis. 59, 207–232 (2004)CrossRefGoogle Scholar
  6. 6.
    Nistér, D.: Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 649–663. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  7. 7.
    Fitzgibbon, A.W., Cross, G., Zisserman, A.: Automatic 3D model construction for turn-table sequences. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, p. 155. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  8. 8.
    Wu, C.: VisualSfM: A visual structure from motion system (2011). http://ccwu.me/vsfm/
  9. 9.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25, 835–846 (2006)CrossRefGoogle Scholar
  10. 10.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Agarwal, S., Chandraker, M.K., Kahl, F., Kriegman, D.J., Belongie, S.: Practical global optimization for multiview geometry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 592–605. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  13. 13.
    Hartley, R.I., Kahl, F.: Optimal algorithms in multiview geometry. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 13–34. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Min, Y.: L-Infinity norm minimization in the multiview triangulation. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds.) AICI 2010. LNCS (LNAI), vol. 6319, pp. 488–494. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    Dai, Z., Wu, Y., Zhang, F., Wang, H.: A novel fast method for \(L_{\infty }\) problems in multiview geometry. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 116–129. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Snyman, J.A.: Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Applied Optimization, vol. 97, 2nd edn. Springer-Verlag New York, Inc., Secaucus (2005) Google Scholar
  17. 17.
    Sánchez, J.R., Álvarez, H., Borro, D.: GFT: GPU fast triangulation of 3D points. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part II. LNCS, vol. 6375, pp. 235–242. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Sánchez, J.R., Álvarez, H., Borro, D.: GPU optimizer: a 3D reconstruction on the GPU using Monte Carlo simulations - how to get real time without sacrificing precision. In: Proceedings of the 2010 International Conference on Computer Vision Theory and Applications, pp. 443–446 (2010)Google Scholar
  19. 19.
    Lourakis, M.I.A., Argyros, A.A.: The design and implementation of a generic sparse bundle adjustment software package based on the Levenberg-Marquardt algorithm. Technical Report FORTH-ICS TR-340-2004, Institute of Computer Science - FORTH (2004)Google Scholar
  20. 20.
    Mak, J., Hess-Flores, M., Recker, S., Owens, J.D., Joy, K.I.: GPU-accelerated and efficient multi-view triangulation for scene reconstruction. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, WACV 2014, pp. 61–68 (2014)Google Scholar
  21. 21.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 726–740. Morgan Kaufmann Publishers Inc., San Francisco (1987)CrossRefGoogle Scholar
  22. 22.
    Nistér, D.: Frame decimation for structure and motion. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, p. 17. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  23. 23.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. ACM Queue 6, 40–53 (2008)CrossRefGoogle Scholar
  24. 24.
    Oxford Visual Geometry Group: Multi-view and Oxford Colleges building reconstruction (2009). http://www.robots.ox.ac.uk/~vgg/
  25. 25.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 800–807 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jason Mak
    • 1
  • Mauricio Hess-Flores
    • 1
  • Shawn Recker
    • 1
  • John D. Owens
    • 1
  • Kenneth I. Joy
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations