Instability of Stationary Solutions of Evolution Equations on Graphs Under Dynamical Node Transition

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 128)


The nonexistence of stable stationary nonconstant solutions of reaction–diffusion-equations \(\partial _{t}u_{j} = \partial _{j}\left (a_{j}(x_{j})\,\partial _{j}u_{j}\right ) + f(u_{j})\) on the edges of a finite metric graph is investigated under continuity and dynamical consistent Kirchhoff flow conditions at all vertices vi of the graph:
$$\displaystyle{\sum _{j}d_{\mathit{ij}}a_{j}(v_{i})\partial _{j}u_{j}(v_{i}) +\sigma _{i}\partial _{t}u(v_{i}) = 0.}$$
Various instability criteria are presented, in particular, for some classes of polynomial reaction terms f.


  1. 1.
    Amann, H.: Ordinary Differential Equations. de Gruyter, Berlin (1990)CrossRefGoogle Scholar
  2. 2.
    Bandle, C., von Below, J., Reichel, W.: Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up. Rend. Lincei Math. Appl. 17, 35–67 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    von Below, J.: Sturm-Liouville eigenvalue problems on networks. Math. Methods Appl. Sci. 10, 383–395 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    von Below, J.: Parabolic Network Equations, 2nd edn. Tübinger Universitätsverlag, Tübingen (1994)Google Scholar
  5. 5.
    von Below, J., Lubary, J.A.: Instability of stationary solutions of reaction-diffusion-equations on graphs. Results Math. (2015). doi:10.1007/s00025-014-0429-8 Google Scholar
  6. 6.
    Camerer, H.: Die elektrotonische Spannungsausbreitung im Soma, Dendritenbaum und Axon von Nervenzellen. Ph.D. Thesis, Tübingen (1980)Google Scholar
  7. 7.
    Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial Differ. Equ. 18, 1309–1364 (1993)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc. Roy. Soc. Edinb. 113A, 43–60 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Slinko, M.G., Hartmann, K.: Methoden und Programme zur Berechnung chemischer Reaktoren. Akademie-Verlag, Berlin (1972)Google Scholar
  10. 10.
    Wilson, R.J.: Introduction to Graph Theory. Oliver & Boyd, Edinburgh (1972)MATHGoogle Scholar
  11. 11.
    Yanagida, E.: Stability of nonconstant steady states in reaction-diffusion systems on graphs. Jpn. J. Ind. Appl. Math. 18, 25–42 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LMPA Joseph Liouville ULCOFR CNRS Math. 2956 Université Lille Nord de FranceCalais CedexFrance

Personalised recommendations