Advertisement

An Approximation Algorithm for Time Optimal Multi-Robot Routing

  • Matthew TurpinEmail author
  • Nathan Michael
  • Vijay Kumar
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 107)

Abstract

This paper presents a polynomial time approximation algorithm for Multi-Robot Routing. The Multi-Robot Routing problem seeks to plan paths for a team of robots to visit a large number of interchangeable goal locations as quickly as possible. As a result of providing a constant factor bound on the suboptimality of the total distance any robot travels, the total completion time, or makespan, for robots to visit every goal vertex using this plan is no more than 5 times the optimal completion time. This result is significant because it provides a rigorous guarantee on time optimality, important in applications in which teams of robots carry out time-critical missions. These applications include autonomous exploration, surveillance, first response, and search and rescue.

Keywords

Minimum Span Tree Goal State Collision Avoidance Hamiltonian Path Goal Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Armstrong, R.D., Jin, Z.: Solving linear bottleneck assignment problems via strong spanning trees. Oper. Res. Lett. 12(3), 179–180 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Burkard, R.E., Cela, E.: Linear Assignment Problems and Extensions. Springer, Berlin (1999)Google Scholar
  4. 4.
    Carlsson, J., Ge, D., Subramaniam, A., Wu, A., Ye, Y.: Solving min-max multi-depot vehicle routing problem. Lectures on Global Optimization. Fields Institute Communications, vol. 55, pp. 31-46 (2009)Google Scholar
  5. 5.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report, DTIC Document (1976)Google Scholar
  6. 6.
    Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. Comput. 11(2), 138–148 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: a taxonomic review. Comput. Ind. Eng. 57(4), 1472–1483 (2009)CrossRefGoogle Scholar
  9. 9.
    Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. In: 17th Annual Symposium on Foundations of Computer Science, pp. 216–227. IEEE (1976)Google Scholar
  10. 10.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM (JACM) 34(3), 596–615 (1987)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hierholzer, C., Wiener, C.: Über die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1(1), 43–67 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Courier Dover Publications (1976)Google Scholar
  15. 15.
    Nagy, G., Salhi, S.D.: Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries. Eur. J. Oper. Res. 162(1), 126–141 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ren, C.: Solving min-max vehicle routing problem. J. Softw. (1796217X) 6(9) (2011)Google Scholar
  17. 17.
    Xu, Z., Rodrigues, B.: A 3/2-approximation algorithm for multiple depot multiple traveling salesman problem. In: Algorithm Theory-SWAT 2010, pp. 127–138. Springer, Berlin (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations