Nanoflares as Probes for Cancer Diagnostics

  • Pratik S. Randeria
  • William E. Briley
  • Alyssa B. Chinen
  • Chenxia M. Guan
  • Sarah Hurst Petrosko
  • Chad A. Mirkin
Part of the Cancer Treatment and Research book series (CTAR, volume 166)


Patients whose cancer is detected early are much more likely to have a positive prognosis and outcome. Nanoflares hold promise as a practical diagnostic platform for the early detection of cancer markers in living cells. These probes are based on spherical nucleic acid (SNAs) and are typically composed of gold nanoparticle cores and densely packed and highly oriented oligonucleotide shells; these sequences are complementary to specific mRNA targets and are hybridized to fluorophore-labeled reporter strands. Nanoflares take advantage of the highly efficient fluorescence quenching properties of gold, the rapid cellular uptake of SNAs that occurs without the use of transfection agents, and the enzymatic stability of such constructs to report a highly sensitive and specific signal in the presence of intracellular target mRNA. In this chapter, we will focus on the synthesis, characterization, and diagnostic applications of nanoflares as they relate to cancer markers.


Gold nanoparticles Spherical nucleic acids Nanoflares Cancer diagnostics Early stage cancer detection 


  1. 1.
    Edwards BK, Noone A-M, Mariotto AB, Simard EP, Boscoe FP, Henley SJ, Jemal A, Cho H, Anderson RN, Kohler BA, Eheman CR, Ward EM (2014) Annual Report to the Nation on the status of cancer, 1975−2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 120:1290–1314PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Almendro V, Marusyk A, Polyak K (2013) Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol 8:277–302CrossRefPubMedGoogle Scholar
  3. 3.
    Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345CrossRefPubMedGoogle Scholar
  4. 4.
    Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Briley WE, Halo TL, Randeria PS, Alhasan AH, Auyeung E, Hurst SJ, Mirkin CA (2012) Biochemistry and biomedical applications of spherical nucleic acids (SNAs). In: Nanomaterials for biomedicine. American Chemical Society, Washington, DCGoogle Scholar
  6. 6.
    Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391CrossRefPubMedGoogle Scholar
  9. 9.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRefGoogle Scholar
  10. 10.
    Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030CrossRefPubMedGoogle Scholar
  11. 11.
    Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA (2009) Nano-flares for mRNA regulation and detection. ACS Nano 3:2147–2152PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA (2009) Regulating immune response using polyvalent nucleic acid—gold nanoparticle conjugates. Mol Pharm 6:1934–1940PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754–12755CrossRefPubMedGoogle Scholar
  14. 14.
    Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle—oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRefPubMedGoogle Scholar
  16. 16.
    Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “Click” conjugates. Nano Lett 10:1477–1480PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Zhang C, Macfarlane RJ, Young KL, Choi CHJ, Hao L, Auyeung E, Liu G, Zhou X, Mirkin CA (2013) A general approach to DNA-programmable atom equivalents. Nat Mater 12:741–746CrossRefPubMedGoogle Scholar
  18. 18.
    Young KL, Scott AW, Hao L, Mirkin SE, Liu G, Mirkin CA (2012) Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett 12:3867–3871PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Calabrese CM, Merkel TJ, Briley WE, Randeria PS, Narayan SP, Rouge JL, Walker DA, Scott AW, Mirkin CA (2014) Biocompatible infinite-coordination-polymer nanoparticle-nucleic-acid conjugates for antisense gene regulation. Angew Chem Int Ed Engl 54(2):476–480Google Scholar
  20. 20.
    Cutler JI, Zhang K, Zheng D, Auyeung E, Prigodich AE, Mirkin CA (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133:9254–9257PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin CA (2014) Liposomal spherical nucleic acids. J Am Chem Soc 136:9866–9869PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22CrossRefGoogle Scholar
  23. 23.
    Brust M, Schiffrin DJ, Bethell D, Kiely CJ (1995) Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv Mater 7:795–797CrossRefGoogle Scholar
  24. 24.
    Letsinger RL, Elghanian R, Viswanadham G, Mirkin CA (2000) Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle—oligonucleotide conjugates. Bioconjug Chem 11:289–291CrossRefPubMedGoogle Scholar
  25. 25.
    Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA—nanoparticle conjugates. J Am Chem Soc 131:2072–2073PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hao L, Patel PC, Alhasan AH, Giljohann DA, Mirkin CA (2011) Nucleic acid-gold nanoparticle conjugates as mimics of microRNA. Small 7:3158–3162PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Rouge JL, Hao L, Wu XA, Briley WE, Mirkin CA (2014) Spherical nucleic acids as a divergent platform for synthesizing RNA–nanoparticle conjugates through enzymatic ligation. ACS Nano 8:8837–8843PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Patel PC, Giljohann DA, Seferos DS, Mirkin CA (2008) Peptide antisense nanoparticles. Proc Natl Acad Sci 105:17222–17226PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Seferos DS, Giljohann DA, Rosi NL, Mirkin CA (2007) Locked nucleic acid-nanoparticle conjugates. ChemBioChem 8:1230–1232CrossRefPubMedGoogle Scholar
  30. 30.
    Hill HD, Millstone JE, Banholzer MJ, Mirkin CA (2009) The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3:418–424PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci 110:7625–7630PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45:1153–1162PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7:3818–3821CrossRefPubMedGoogle Scholar
  36. 36.
    Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA (2008) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311CrossRefGoogle Scholar
  37. 37.
    Zheng D, Giljohann DA, Chen DL, Massich MD, Wang X-Q, Iordanov H, Mirkin CA, Paller AS (2012) Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci 109:11975–11980PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Long H, Kudlay A, Schatz GC (2006) Molecular dynamics studies of ion distributions for DNA duplexes and DNA clusters: salt effects and connection to DNA melting. J Phys Chem B 110:2918–2926CrossRefPubMedGoogle Scholar
  39. 39.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefPubMedGoogle Scholar
  40. 40.
    Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209ra152Google Scholar
  41. 41.
    Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Santangelo PJ, Nix B, Tsourkas A, Bao G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 32:e57Google Scholar
  43. 43.
    Prigodich AE, Lee O-S, Daniel WL, Seferos DS, Schatz GC, Mirkin CA (2010) Tailoring DNA structure to increase target hybridization kinetics on surfaces. J Am Chem Soc 132:16296Google Scholar
  44. 44.
    Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582CrossRefPubMedGoogle Scholar
  45. 45.
    EMD Millipore (2014) SmartFlare RNA detection probes.
  46. 46.
    Peng X-H, Cao Z-H, Xia J-T, Carlson GW, Lewis MM, Wood WC, Yang L (2005) Real-time detection of gene expression in cancer cells using molecular beacon imaging: new strategies for cancer research. Cancer Res 65:1909–1917CrossRefPubMedGoogle Scholar
  47. 47.
    Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed nanoflares: mRNA detection in live cells. Anal Chem 84:2062–2066PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Li N, Chang C, Pan W, Tang B (2012) A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed 51:7426–7430CrossRefGoogle Scholar
  49. 49.
    Pan W, Zhang T, Yang H, Diao W, Li N, Tang B (2013) Multiplexed detection and imaging of intracellular mRNAs using a four-color nanoprobe. Anal Chem 85:10581–10588CrossRefPubMedGoogle Scholar
  50. 50.
    Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13:920–928CrossRefPubMedGoogle Scholar
  51. 51.
    Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Halo TL, McMahon KM, Angeloni NL, Xu Y, Wang W, Chinen AB, Malin D, Strekalova E, Cryns VL, Cheng C, Mirkin CA, Thaxton CS (2014) NanoFlares for the detection, isolation, and culture of live tumor cells from human blood. Proc Natl Acad Sci USA 111:17104–17109PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Noble PB, Cutts JH (1967) Separation of blood leukocytes by Ficoll gradient. Can Vet J 8:110–111Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pratik S. Randeria
    • 1
    • 2
  • William E. Briley
    • 2
    • 3
  • Alyssa B. Chinen
    • 2
    • 4
  • Chenxia M. Guan
    • 2
    • 5
  • Sarah Hurst Petrosko
    • 2
    • 4
  • Chad A. Mirkin
    • 2
    • 4
  1. 1.Department of Biomedical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.International Institute for NanotechnologyNorthwestern UniversityEvanstonUSA
  3. 3.Interdepartmental Biological Sciences ProgramNorthwestern UniversityEvanstonUSA
  4. 4.Department of ChemistryNorthwestern UniversityEvanstonUSA
  5. 5.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations