On the Tradeoff Between Hardware Protection and Optimization Success: A Case Study in Onboard Evolutionary Robotics for Autonomous Parallel Parking

  • Mostafa Wahby
  • Heiko Hamann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9028)


Making the transition from simulation to reality in evolutionary robotics is known to be challenging. What is known as the reality gap, summarizes the set of problems that arises when robot controllers have been evolved in simulation and then are transferred to the real robot. In this paper we study an additional problem that is beyond the reality gap. In simulations, the robot needs no protection against damage, while on the real robot that is essential to stay cost-effective. We investigate how the probability of collisions can be minimized by introducing appropriate penalties to the fitness function. A change to the fitness function, however, changes the evolutionary dynamics and can influence the optimization success negatively. Therefore, we detect a tradeoff between a required hardware protection and a reduced efficiency of the evolutionary optimization process. We study this tradeoff on the basis of a robotics case study in autonomous parallel parking.


Fitness Function Sensor Reading Real Robot Ultrasonic Sensor Optimization Success 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  2. 2.
    Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)CrossRefGoogle Scholar
  3. 3.
    Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: a survey and analysis. Robot. Auton. Syst. 57, 345–370 (2009)CrossRefGoogle Scholar
  4. 4.
    Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  5. 5.
    Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. IEEE Trans. Evol. Comput. 17(1), 122–145 (2013)CrossRefGoogle Scholar
  6. 6.
    Eiben, Á.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, pp. 362–384. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Haasdijk, E., Bredeche, N., Eiben, Á.E.: Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE 9(6), e98466 (2014)CrossRefGoogle Scholar
  8. 8.
    Haasdijk, E., Bredeche, N.: Controlling task distribution in MONEE. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances In Artificial Life (ECAL 2013), pp. 671–678 (2013)Google Scholar
  9. 9.
    Stradner, J., Hamann, H., Zahadat, P., Schmickl, T., Crailsheim, K.: On-line, on-board evolution of reaction-diffusion control for self-adaptation. In: Adami, C., Bryson, D.M., Ofria, C., Pennock, R.T. (eds.) Alife XIII, pp. 597–598. MIT Press, Cambridge (2012)Google Scholar
  10. 10.
    Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot. In: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior (SAB 1994), pp. 421–430. MIT Press (1994)Google Scholar
  11. 11.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Ronchetti, F., Lanzarini, L.C.: Automatic vehicle parking using an evolution-obtained neural controller. In: Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI), pp. 71–80 (2011)Google Scholar
  13. 13.
    Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008)CrossRefGoogle Scholar
  14. 14.
    Chervenski, P., Ryan, S.: MultiNEAT.
  15. 15.
    Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations