Advertisement

Improving Maritime Awareness with Semantic Genetic Programming and Linear Scaling: Prediction of Vessels Position Based on AIS Data

  • Leonardo VanneschiEmail author
  • Mauro Castelli
  • Ernesto Costa
  • Alessandro Re
  • Henrique Vaz
  • Victor Lobo
  • Paulo Urbano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9028)

Abstract

Maritime domain awareness deals with the situational understanding of maritime activities that could impact the security, safety, economy or environment. It enables quick threat identification, informed decision making, effective action support, knowledge sharing and more accurate situational awareness. In this paper, we propose a novel computational intelligence framework, based on genetic programming, to predict the position of vessels, based on information related to the vessels past positions in a specific time interval. Given the complexity of the task, two well known improvements of genetic programming, namely geometric semantic operators and linear scaling, are integrated in a new and sophisticated genetic programming system. The work has many objectives, for instance assisting more quickly and effectively a vessel when an emergency arises or being able to chase more efficiently a vessel that is accomplishing illegal actions. The proposed system has been compared to two different versions of genetic programming and three non-evolutionary machine learning methods, outperforming all of them on all the studied test cases.

Keywords

Genetic Programming Linear Scaling Automatic Identification System Maritime Security Genetic Programming System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge project MassGP (PTDC/EEI-CTP/2975/2012), FCT, Portugal.

References

  1. 1.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  2. 2.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 205–216. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet. Programm. Evolvable Mach. 16(1), 73–81 (2015)CrossRefGoogle Scholar
  5. 5.
    Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  6. 6.
    Weisberg, S.: Applied Linear Regression. Wiley Series in Prob. and Stat. Wiley, Hoboken (2005) CrossRefzbMATHGoogle Scholar
  7. 7.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999) zbMATHGoogle Scholar
  8. 8.
    Scholkopf, B., Smola, A.: Learning With Kernels: Support Vector Machines, Regularization, Optimization and Beyond. Adaptative computation and machine learning series. The MIT Press, Cambridge (2002) Google Scholar
  9. 9.
    Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. Genet. Program. Theory Pract. 14, 3–29 (2013). SpringerGoogle Scholar
  10. 10.
    Vanneschi, L.: Improving genetic programming for the prediction of pharmacokinetic parameters. Memetic Comput. 6(4), 255–262 (2014)CrossRefGoogle Scholar
  11. 11.
    Roy, J.: Anomaly detection in the maritime domain. In: Proceedings of SPIE, vol. 6945, pp. 69414–69450 (2008)Google Scholar
  12. 12.
    Roy, J., Davenport, M.: Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In: Waterside Security Conference (WSS), pp. 1–8 (2010)Google Scholar
  13. 13.
    Laxhammar, R.: Anomaly detection for sea surveillance. In: 2008 11th International Conference on Information Fusion, pp. 1–8, June 2008Google Scholar
  14. 14.
    Chen, C.H., Khoo, L.P., Chong, Y.T., Yin, X.F.: Knowledge discovery using genetic algorithm for maritime situational awareness. Expert Syst. Appl. 41(6), 2742–2753 (2014)CrossRefGoogle Scholar
  15. 15.
    Riveiro, M., Falkman, G., Ziemke, T.: Visual analytics for the detection of anomalous maritime behavior. In: 12th International Conference on Information Visualisation, IV 2008, pp. 273–279, July 2008Google Scholar
  16. 16.
    Brax, C., Niklasson, L.: Enhanced situational awareness in the maritime domain: an agent-based approach for situation management. In: SPIE 7352, Intelligent Sensing, Situation Management, Impact Assessment, and Cyber-Sensing, pp. 1–10 (2009)Google Scholar
  17. 17.
    Kazemi, S., Abghari, S., Lavesson, N., Johnson, H., Ryman, P.: Open data for anomaly detection in maritime surveillance. Expert Syst. Appl. 40(14), 5719–5729 (2013)CrossRefGoogle Scholar
  18. 18.
    Lobo, V.: Application of self-organizing maps to the maritime environment. In: Popovich, V., Claramunt, C., Schrenk, M., Korolenko, K. (eds.) Information Fusion and Geographic Information Systems. Lecture Notes in Geoinformation and Cartography, pp. 19–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Villmann, T., Mernyi, E., Hammer, B.: Neural maps in remote sensing image analysis. Neural Netw. 16(34), 389–403 (2003)CrossRefGoogle Scholar
  20. 20.
    Hardman-Mountford, N., Richardson, A., Boyer, D., Kreiner, A., Boyer, H.: Relating sardine recruitment in the northern benguela to satellite-derived sea surface height using a neural network pattern recognition approach. Prog. Oceanogr. 59(23), 241–255 (2003)CrossRefGoogle Scholar
  21. 21.
    Niang, A., Gross, L., Thiria, S., Badran, F., Moulin, C.: Automatic neural classification of ocean colour reflectance spectra at the top of the atmosphere with introduction of expert knowledge. Remote Sens. Environ. 86(2), 257–271 (2003)CrossRefGoogle Scholar
  22. 22.
    Tetreault, B.: Use of the automatic identification system (AIS) for maritime domain awareness (MDA). In: Proceedings of MTS/IEEE OCEANS, vol. 2, pp. 1590–1594 (2005)Google Scholar
  23. 23.
    International Association of Maritime Aids to Navigation and Lighthouse Authorities (IALA): IALA guidelines on the universal automatic identification system (AIS) (2002)Google Scholar
  24. 24.
    Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program Evolvable Mach. 15(2), 195–214 (2014)CrossRefGoogle Scholar
  25. 25.
    Castelli, M., Vanneschi, L., Silva, S.: Semantic search based genetic programming and the effect of introns deletion. IEEE Trans. Cybern. 44(1), 103–113 (2013). doi: 10.1109/TSMCC.2013.2247754. ISSN: 2168-2267CrossRefGoogle Scholar
  26. 26.
    Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raid, G. et al. (ed.) GECCO 2009, 8–12 July, pp. 987–994. ACM (2009)Google Scholar
  27. 27.
    Poli, R., McPhee, N.F., Vanneschi, L.: The impact of population size on code growth in gp: Analysis and empirical validation. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. GECCO 2008, pp. 1275–1282. ACM (2008)Google Scholar
  28. 28.
    Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 371–380. Springer, Heidelberg (2002) Google Scholar
  29. 29.
    Tomassini, M., Vanneschi, L., Fernández, F., Galeano, G.: A study of diversity in multipopulation genetic programming. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 243–255. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  30. 30.
    Weka Machine Learning Project: Weka. http://www.cs.waikato.ac.nz/~ml/weka

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonardo Vanneschi
    • 1
    Email author
  • Mauro Castelli
    • 1
  • Ernesto Costa
    • 2
  • Alessandro Re
    • 1
  • Henrique Vaz
    • 3
  • Victor Lobo
    • 1
    • 4
  • Paulo Urbano
    • 3
  1. 1.NOVA IMSUniversidade Nova de LisboaLisbonPortugal
  2. 2.CISUC, Department of Informatics EngineeringUniversity of CoimbraCoimbraPortugal
  3. 3.LabMAg, Faculdade de CinciasUniversidade de LisboaLisbonPortugal
  4. 4.Portuguese Naval Academy, AlfeiteAlmadaPortugal

Personalised recommendations