Advertisement

A Multi-objective Evolutionary Algorithm for Interaction Systems Based on Laser Pointers

  • Francisco ChávezEmail author
  • Eddie Clemente
  • Daniel E. Hernández
  • Francisco Fernández de Vega
  • Gustavo Olague
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9028)

Abstract

In this paper we face the problem of accurate location of a laser spot that is used as interaction system in real environments. The work presented is compared with previous approaches where different algorithms work with a single objective, using images that has been previously simplified to reduce computing time. Instead, the new approach presented in this paper is capable of processing whole images. The results show that the inclusion of multi-objective methods allows us not only to detect the presence of the laser spot, the single objective in previous works, but also to obtain accurate information of the laser spot in the image, and thus provide the location of the device on which the user wants to act.

Keywords

Multi-objective evolutionary algorithm Laser pointer Interaction systems 

Notes

Acknowledgments

This work was supported by the Seventh Framework Programme of the European Union through the International Research Staff Plan Marie Curie, FP7-PEOPLE-2013-IRSES, ACoBSEC 612,689 Grant, Ministerio de Educación, Cultura y Deporte of Spain under the project TIN2011-28627-C04-03, Gobierno de Extremadura, Consejería de Economía Comercio e Innovación and FEDER, GRU10029 project. This work has also been supported by CONACyT México through the project 155045–“Evolución de Cerebros Artificiales en Visión por Computador”.

References

  1. 1.
    Chan, M., Estève, D., Escriba, C., Campo, E.: A review of smart homes-present state and future challenges. Comput. Meth. Prog. Biomed. 91(1), 55–81 (2008)CrossRefGoogle Scholar
  2. 2.
    Chávez, F., Fernández, F., Alcalá, R., Alcalá-Fdez, J., Herrera, F.: Evolutionary learning of a laser pointer detection fuzzy system for an environment control system. In: 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 256–263 (2011)Google Scholar
  3. 3.
    Chávez, F., Fernández, F., Alcalá, R., Alcalá-Fdez, J., Olague, G., Herrera, F.: Hybrid laser pointer detection algorithm based on template matching and fuzzy rule-based systems for domotic control in real home environments. Appll. Intell., 1–17 (2010). doi: 10.1007/s10489-010-0268-6
  4. 4.
    Chávez, F., Fernández, F., Alcalá-Fdez, J., Alcalá, R., Herrera, F., Olague, G.: Genetic tuning of a laser pointer environment control device system for handicapped people with fuzzy systems. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 1–8 (2010)Google Scholar
  5. 5.
    Chávez, F., Fernández, F., Gacto, M., Alcalá, R.: Automatic laser pointer detection algorithm for environment control device systems based on template matching and genetic tuning of fuzzy rule-based systems. Int. J. Comput. Intell. Syst. 5(2), 368–386 (2012)CrossRefGoogle Scholar
  6. 6.
    Chávez, F., Clemente, E., Dozal, L., Fernández de Vega, F., Olague, G.: Auto-Ajuste del Foco de Atencion para la Mejora de un Sistema de Deteccion de Punto Laser. Congreso Espaol de Informtica., 713–722 (2013)Google Scholar
  7. 7.
    Clemente, E., Chávez, F., Dozal, L., Fernández de Vega, F., Olague, G.: Self-adjusting focus of attention by means of GP for improving a laser point detection system. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 1237–1244 (2013)Google Scholar
  8. 8.
    Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object recognition with an optimized ventral stream model using genetic programming. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. 18, 193–222 (1995)Google Scholar
  10. 10.
    Dozal, L., Olague, G., Clemente, E., Sánchez, M.: Evolving visual attention programs through EVO features. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 326–335. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Kemp, C., Anderson, C., Nguyen, H., Trevor, A., Xu, Z.: A point-and-click interface for the real world: laser designation of objects for mobile manipulation. In: 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI 2008), pp. 241–248 (2008)Google Scholar
  12. 12.
    Kim, N.W., Lee, S.-J., Lee, B.-G., Lee, J.-J.: Vision based laser pointer interaction for flexible screens. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4551, pp. 845–853. Springer, Heidelberg (2007) Google Scholar
  13. 13.
    Nakashima, H., Aghajan, H., Augusto, J.C.: Handbook of Ambient Intelligence and Smart Environments. Springer, New York (2010) CrossRefGoogle Scholar
  14. 14.
    Olague, G.: Evolutionary Computer Vision - The First Footprints. Springer (to appear)Google Scholar
  15. 15.
    Olague, G., Clemente, E., Dozal, L., Hernández, D.E.: Evolving an artificial visual cortex for object recognition with brain programming. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 97–119. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Olague, G., Dozal, L., Clemente, E., Ocampo, A.: Optimizing an artificial dorsal stream on purpose for visual attention. In: Schuetze, O., Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500, pp. 141–166. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  17. 17.
    Pérez, C.B., Olague, G.: Evolutionary learning of local descriptor operators for object recognition. In: GECCO, pp. 1051–1058 (2009)Google Scholar
  18. 18.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)CrossRefGoogle Scholar
  19. 19.
    Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 11(2), 1019–1025 (1999)Google Scholar
  20. 20.
    Dozal, L., Olague, G., Clemente, E., Hernndez, D.E.: Brain programming for the evolution of an artificial dorsal stream. Cogn. Comput. 6(3), 528–557 (2014)CrossRefGoogle Scholar
  21. 21.
    Nakib, A., Oulhadj, H., Siarry, P.: Image histogram thresholding based on multiobjective optimization. Signal Process. 87(11), 2516–2534 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shirakawa, S., Nagao, T.: Evolutionary image segmentation based on multiobjective clustering. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 2466–2473 (2009)Google Scholar
  23. 23.
    Nakib, A., Oulhadj, H., Siarry, P.: Non-supervised image segmentation based on multiobjective optimization. Pattern Recogn. Lett. 29(2), 161–172 (2008)CrossRefGoogle Scholar
  24. 24.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francisco Chávez
    • 1
    Email author
  • Eddie Clemente
    • 2
  • Daniel E. Hernández
    • 2
  • Francisco Fernández de Vega
    • 1
  • Gustavo Olague
    • 2
  1. 1.Department of Computer ScienceUniversity of ExtremaduraMéridaSpain
  2. 2.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMéxico

Personalised recommendations