A Benchmark for Virtual Camera Control

  • Paolo BurelliEmail author
  • Georgios N. Yannakakis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9028)


Automatically animating and placing the virtual camera in a dynamic environment is a challenging task. The camera is expected to maximise and maintain a set of properties — i.e. visual composition — while smoothly moving through the environment and avoiding obstacles. A large number of different solutions to the problem have been proposed so far including, for instance, evolutionary techniques, swarm intelligence or ad hoc solutions. However, the large diversity of the solutions and the lack of a common benchmark, made any comparative analysis of the different solutions extremely difficult. For this reason, in this paper, we propose a benchmark for the problem of virtual camera control and we analyse a number of different problems in different virtual environments. Each of these scenarios is described through a set of complexity measures and, as a result of this analysis, a subset of scenarios is selected as the core of the benchmark.


Objective Function Test Problem Virtual Environment Target Object Camera Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pinelle, D., Wong, N.: Heuristic evaluation for games. In: CHI, CHI 2008, pp. 1453–1462. ACM Press, New York, USA (2008)Google Scholar
  2. 2.
    Blinn, J.: Where Am I? What Am I Looking At? IEEE Comput. Graph. Appl. 8(4), 76–81 (1988)CrossRefGoogle Scholar
  3. 3.
    Ranon, R., Urli, T.: Improving the efficiency of viewpoint composition. IEEE Trans. Vis. Comput. Graph. 2626(c), 1–1 (2014)Google Scholar
  4. 4.
    Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)Google Scholar
  5. 5.
    Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17, 619–632 (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ware, C., Osborne, S.: Exploration and virtual camera control in virtual three dimensional environments. ACM SIGGRAPH 24(2), 175–183 (1990)CrossRefGoogle Scholar
  7. 7.
    Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Proceedings of Graphics Interface, pp. 190–199 (1994)Google Scholar
  8. 8.
    Arijon, D.: Grammar of the Film Language. Silman-James Press, Los Angeles (1991)Google Scholar
  9. 9.
    Bares, W.H., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3D camera composition from frame constraints. In: ACM Multimedia, pp. 177–186. ACM Press, Marina del Rey, California, USA (2000)Google Scholar
  10. 10.
    Christie, M., Olivier, P., Normand, J.-M.: Camera Control in Computer Graphics. Computer Graphics Forum 27, 2197–2218 (2008)CrossRefGoogle Scholar
  11. 11.
    Halper, N., Olivier, P.: CamPlan: a camera planning agent. In: International Symposium on Smart Graphics, pp. 92–100. AAAI Press (2000)Google Scholar
  12. 12.
    Burelli, P., Di Gaspero, L., Ermetici, A., Ranon, R.: Virtual camera composition with particle swarm optimization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 130–141. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Lino, C., Christie, M., Lamarche, F., Schofield, G., Olivier, P.: A real-time cinematography system for interactive 3D environments, pp. 139–148. In: Eurographics/ACM SIGGRAPH Symposium on Computer, Animation (2010)Google Scholar
  14. 14.
    Burelli, P., Yannakakis, G.N.: Combining local and global optimisation for virtual camera control. In: 2010 IEEE Symposium on Computational Intelligence and Games CIG, pp. 403–410 (2010)Google Scholar
  15. 15.
    Preuss, M., Burelli, P., Yannakakis, G.N.: Diversified Virtual Camera Composition. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 265–274. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Olivier, P., Halper, N., Pickering, J., Luna, P.: Visual composition as optimisation. In: Artificial Intelligence and Simulation of Behaviour (1999)Google Scholar
  17. 17.
    Burelli, P., Yannakakis, G.N., Global search for occlusion minimisation in virtual camera control. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE, Barcelona (2010)Google Scholar
  18. 18.
    Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: problem classes and solution techniques. J. Global Optim. 14(4), 437–447 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms. LNCS, vol. 455. Springer-Verlag, New York (1990) zbMATHGoogle Scholar
  20. 20.
    Schönemann, L.: Evolution strategies in dynamic environments. In: Yang, S., Ong, Y.-S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments. SCI, vol. 51, pp. 51–77. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Architecture, Design and Media TechnologyAalborg University CopenhagenCopenhagenDenmark
  2. 2.Institute of Digital GamesUniversity of MaltaMsidaMalta

Personalised recommendations