Advertisement

A Genetic Programming Approach to Generating Musical Compositions

  • David M. Hofmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)

Abstract

Evolutionary algorithms have frequently been applied in the field of computer-generated art. In this paper, a novel approach in the domain of automated music composition is proposed. It is inspired by genetic programming and uses a tree-based domain model of compositions. The model represents musical pieces as a set of constraints changing over time, forming musical contexts allowing to compose, reuse and reshape musical fragments. The system implements a multi-objective optimization aiming for statistical measures and structural features of evolved models. Furthermore a correspondent domain-specific computer language is introduced used to transform domain models to a comprehensive, human-readable text representation and vice versa. The language is also suitable to limit the search space of the evolution and as a composition language for human composers.

Keywords

Automated music generation Multi-objective genetic programming Domain-specific languages 

References

  1. 1.
    Collins, N.: Introduction to Computer Music. Wiley, Chichester (2010)Google Scholar
  2. 2.
    Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Generation. Springer, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley, Hoboken (2006)Google Scholar
  4. 4.
    Horner, A., Goldberg, D.E.: Genetic algorithms and computer-assisted music composition. In: Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 437–441. Morgan Kaufmann, San Mateo (1991)Google Scholar
  5. 5.
    Biles, J.A.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of the 1994 International Computer Music Conference, ICMA, San Francisco, pp. 131–137 (1994)Google Scholar
  6. 6.
    Biles, J.A.: Improvizing with genetic algorithms: GenJam. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 137–169. Springer, London (2007)CrossRefGoogle Scholar
  7. 7.
    Horowitz, D.: Generating rhythms with genetic algorithms. In: Proceedings of the 1994 International Computer Music Conference, ICMA, San Francisco, pp. 142–143 (1994)Google Scholar
  8. 8.
    McIntyre, R.A.: Bach in a box: the evolution of four part baroque harmony using the genetic algorithm. In: Proceedings of the IEEE Conference on Evolutionary Computation, vol. 14, No 3. IEEE Press, New York, pp. 852–857 (1994)Google Scholar
  9. 9.
    Horner, A. and Ayers, L.: Harmonization of musical progressions with genetic algorithms. In: Proceedings of the 1995 International Computer Music Conference, ICMA, San Francisco, pp. 483–484 (1995)Google Scholar
  10. 10.
    Jacob, B.: Composing with genetic algorithms. In: Proceedings of the 1995 International Computer Music Conference, ICMA, San Francisco, pp. 452–455 (1995)Google Scholar
  11. 11.
    Jacob, B.: Algorithmic composition as a model of creativity. Organised Sound 1(3), 157–165 (1996)CrossRefGoogle Scholar
  12. 12.
    Johanson, B., Poli, R.: GP-Music: an interactive genetic programming system for music generation with automated fitness raters. In: Koza, J.R., et al. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference (GP 1998), pp. 181–186. Morgan Kaufmann, San Francisco (1998)Google Scholar
  13. 13.
    Marques, M., Oliveira, V., Vieira, S., Rosa, A.C.: Music composition using genetic evolutionary algorithms. In: Proceedings of the IEEE Conference on Evolutionary Computation 2000. IEEE Press, New York (2000)Google Scholar
  14. 14.
    de la Puente, A.O., Alfonso, R.S., Moreno, M.A.: Automatic composition of music by means of grammatical evolution. In: Proceedings of the 2002 Conference on APL, pp. 148–155. ACM Press, New York (2002)Google Scholar
  15. 15.
    Fox, C.: Genetic hierarchical music structures. In: Proceedings of the 19th International FLAIRS Conference. AAAI Press, Menlo Park (2006)Google Scholar
  16. 16.
    Waschka II, R.: Composing with genetic algorithms: GenDash. In: Miranda, E.R., Biles, J.A. (eds.) Evolutionary Computer Music, pp. 117–136. Springer, London (2007)CrossRefGoogle Scholar
  17. 17.
    Boden, M.A.: Creativity and computers. In: Dartnall, T. (ed.) Artificial Intelligence and Creativity: An Interdisciplinary Approach, pp. 3–26. Kluwer Academic Publishers, Dordrecht (1994)CrossRefGoogle Scholar
  18. 18.
    Boden, M.A.: Creativity and Art: Three Roads to Surprise. Oxford University Press, Oxford (2010)Google Scholar
  19. 19.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Barlow, C.: On musiquantics. Technical report, Johannes Gutenberg-Universität Mainz (2012)Google Scholar
  21. 21.
    Patel, A.D.: Music, Language, and the Brain. Oxford University Press, New York (2008)Google Scholar
  22. 22.
    Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic Programming (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Musicology and Music InformaticsUniversity of Music KarlsruheKarlsruheGermany

Personalised recommendations