Avoidance Drawings Evolved Using Virtual Drawing Robots

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)

Abstract

We introduce a generative system for “avoidance drawings”, drawings made by virtual drawing robots executing a random walk while simultaneously avoiding the paths of other robots. The random walk method is unique and is based on a curvature controlling scheme initially introduced by Chappell. We design a fitness function for evaluating avoidance drawings and an evolutionary framework for evolving them. This requires us to follow principles we elucidate for simulated evolution where the generative system is highly stochastic in nature. Examples document the evolutionary system’s efficacy and success.

References

  1. 1.
    Chappell, D.: Taking a point for a walk: pattern formation with self-interacting curves. In: Greenfield, G., et al. (eds.) Bridges 2014 Conference Proceedings, pp. 337–340. Tessellations Publishing, Phoenix (2014)Google Scholar
  2. 2.
    Madras, N., Slade, G.: The Self-Avoiding Walk. BirkHauser, Boston (1993)MATHGoogle Scholar
  3. 3.
    Vanderzande, C.: Lattice Models of Polymers. Cambridge University Press, New York (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Kremer, K., Lyklema, J.: Infinitely growing self-avoiding walk. Phys. Rev. Lett. 54, 267–269 (1985)CrossRefGoogle Scholar
  5. 5.
    Reynolds, C.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  6. 6.
    Jacob, C., Hushlak, G., Boyd, J., Sayles, M., Nuytten, P., Pilat, M.: Swarmart: interactive art from swarm intelligence. Leonardo 40(3), 248–254 (2007)CrossRefGoogle Scholar
  7. 7.
    Moura, L., Pereira, H.: Man + Robots: Symbiotic Art. Institut d’Art Contemporain, Lyon/Villeurbanne (2004)Google Scholar
  8. 8.
    Moura, L., Ramos, V.: Swarm paintings – nonhuman art. In: Maubant, J., et al. (eds.) Architopia: Book, Art, Architecture, and Science, pp. 5–24. Institut d’Art Contemporain, Lyon/Villeurbanne (2002)Google Scholar
  9. 9.
    Bird, J., Husbands, P., Perris, M., Bigge, B., Brown, P.: Implicit fitness functions for evolving a drawing robot. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 473–478. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Monmarché, M. et al., 2014. http://youtu.be/GrxthHngARU
  11. 11.
    Annunziato, M.: The Nagual experiment. In: Soddu, C., (ed.) Proceedings 1998 International Conference on Generative Art, pp. 241–251 (1998)Google Scholar
  12. 12.
    McCormack, J.: Creative ecosystems. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 39–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Greenfield, G.: Robot paintings evolved using simulated robots. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 611–621. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Greenfield, G.: Evolved look-up tables for simulated DNA controlled robots. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 51–60. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Greenfield, G.: On simulating drawing robots with straight line motion but curvilinear pen paths. In: Roeschel, O., Santos, E., Yamaguchi, Y., (eds.) 14th International Conference on Geometry and Graphics, International Society for Computer Graphics, Conference DVD (2010)Google Scholar
  16. 16.
    Greenfield, G.: A platform for evolving controllers for simulated drawing robots. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 108–116. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of RichmondRichmondUSA

Personalised recommendations