On the Stylistic Evolution of a Society of Virtual Melody Composers

  • Valerio Velardo
  • Mauro Vallati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)


In the field of computational creativity, the area of automatic music generation deals with techniques that are able to automatically compose human-enjoyable music. Although investigations in the area started recently, numerous techniques based on artificial intelligence have been proposed. Some of them produce pleasant results, but none is able to effectively evolve the style of the musical pieces generated.

In this paper, we fill this gap by proposing an evolutionary memetic system that composes melodies, exploiting a society of virtual composers. An extensive validation, performed by using both quantitative and qualitative analyses, confirms that the system is able to evolve its compositional style over time.


Stylistic evolution Melody generation Memetic approach Computational creativity 


  1. 1.
    Fernández, J.D., Vico, F.J.: AI methods in algorithmic composition: a comprehensive survey. J. Artif. Intell. Res. (JAIR) 48, 513–582 (2013)zbMATHGoogle Scholar
  2. 2.
    Pachet, F.: Rhythms as emerging structures. In: Proceedings of 2000 International Computer Music Conference, Berlin, ICMA (2000)Google Scholar
  3. 3.
    Gimenes, M., Miranda, E.R., Johnson, C.: A memetic approach to the evolution of rhythms in a society of software agents. In: Proceedings of the 10th Brazilian Symposium on Computer Music (SBCM), vol. 16 (2005)Google Scholar
  4. 4.
    Miranda, E.R.: On the evolution of music in a society of self-taught digital creatures. Digit. Creativity 14(1), 29–42 (2003)CrossRefGoogle Scholar
  5. 5.
    Velardo, V., Vallati, M.: Automatic melody composition and evolution: a cognitive-based approach. In: Proceedings of the Conference on Interdisciplinary Musicology (CIM) (2014)Google Scholar
  6. 6.
    Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, New York (2004)Google Scholar
  7. 7.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)Google Scholar
  8. 8.
    Graham, G.: Genes: A Philosophical Inquiry. Psychology Press, New York (2002)Google Scholar
  9. 9.
    Dennett, D.C., Mittwoch, U.: Darwin’s dangerous idea: evolution and the meanings of life. Ann. Hum. Genet. 60(3), 267–267 (1996)CrossRefGoogle Scholar
  10. 10.
    Jan, S.B.: The Memetics of Music: A Neo-Darwinian View of Musical Structure and Culture. Ashgate, Aldershot (2007)Google Scholar
  11. 11.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81 (1956)CrossRefGoogle Scholar
  12. 12.
    Jan, S.: Music, memory, and memes in the light of calvinian neuroscience. Music Theor. Online 17(2), 3–50 (2011)Google Scholar
  13. 13.
    Brown, S., Jordania, J.: Universals in the world’s musics. Psychol. Music 41, 229–248 (2013)CrossRefGoogle Scholar
  14. 14.
    Fabbri, F.: Browsing music spaces: categories and the musical mind. In: Proceedings of the IASPM Conference (1999)Google Scholar
  15. 15.
    Meyer, L.B.: Style and Music: Theory, History, and Ideology. University of Chicago Press, Chicago (1989)Google Scholar
  16. 16.
    Cope, D.: Computers and Musical Style. Oxford University Press, Oxford (1991)Google Scholar
  17. 17.
    Dannenberg, R.B., Thom, B., Watson, D.: A machine learning approach to musical style recognition. In: Proceedings of the ICMC (1997)Google Scholar
  18. 18.
    Lartillot, O., Dubnov, S., Assayag, G., Bejerano, G.: Automatic modeling of musical style. In: Proceedings of the 2001 International Computer Music Conference, pp. 447–454 (2001)Google Scholar
  19. 19.
    Hontanilla, M., Pérez-Sancho, C., Iñesta, J.M.: Modeling musical style with language models for composer recognition. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 740–748. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    de León, P.J.P., Iñesta, J.M.: Musical style classification from symbolic data: a two-styles case study. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 167–178. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)CrossRefGoogle Scholar
  22. 22.
    Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Music, Humanities and MediaUniversity of HuddersfieldHuddersfieldUK
  2. 2.School of Computing and EngineeringUniversity of HuddersfieldHuddersfieldUK

Personalised recommendations