Interpretability of Music Classification as a Criterion for Evolutionary Multi-objective Feature Selection

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)

Abstract

The development of numerous audio signal characteristics led to an increase of classification performance for automatic categorisation of music audio recordings. Unfortunately, models built with such low-level descriptors lack of interpretability. Musicologists and listeners can not learn musically meaningful properties of genres, styles, composers, or personal preferences. On the other side, there are new algorithms for the mining of interpretable features from music data: instruments, moods and melodic properties, tags and meta data from the social web, etc. In this paper, we propose an approach how evolutionary multi-objective feature selection can be applied for a systematic maximisation of interpretability without a limitation to the usage of only interpretable features. We introduce a simple hypervolume based measure for the evaluation of trade-off between classification performance and interpretability and discuss how the results of our study may help to search for particularly relevant high-level descriptors in future.

Keywords

Interpretable music classification Evolutionary multi-objective optimisation Feature selection 

References

  1. 1.
    Anglade, A., Benetos, E., Mauch, M., Dixon, S.: Improving music genre classification using automatically induced harmony rules. J. New Music Res. 39(4), 349–361 (2010)CrossRefGoogle Scholar
  2. 2.
    Arabi A.F., Lu, G.: Enhanced polyphonic music genre classification using high level features. In: Proceedings of the IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 101–106 (2009)Google Scholar
  3. 3.
    Van Balen, J., Bountouridis, D., Wiering, F., Veltkamp, R.: Cognition-inspired descriptors for scalable cover song retrieval. In: Proceedings of 15th International Society for Music Information Retrieval Conference, pp. 379–384 (2014)Google Scholar
  4. 4.
    Berenzweig, A., Ellis, D.P.W., Lawrence, S.: Anchor space for classification and similarity measurement of music. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 29–32 (2003)Google Scholar
  5. 5.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Sci. Res. 181(3), 1653–1669 (2007)MATHGoogle Scholar
  6. 6.
    Bischl, B., Vatolkin, I., Preuss, M.: Selecting small audio feature sets in music classification by means of asymmetric mutation. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 314–323. Springer, Heidelberg (2010) Google Scholar
  7. 7.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)MATHGoogle Scholar
  8. 8.
    Ellis, K., Coviello, E., Chan, A., Lanckriet, G.: A bag of systems representation for music auto-tagging. IEEE Trans. Audio Speech Lang. Process. 21(12), 2554–2569 (2013)CrossRefGoogle Scholar
  9. 9.
    Fernández, F., Chávez, F.: Fuzzy rule based system ensemble for music genre classification. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 84–95. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Herlands, W., Der, R., Greenberg, Y., Levin, S.: A machine learning approach to musically meaningful homogeneous style classification. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 276–282 (2014)Google Scholar
  11. 11.
    Kostek, B., Plewa, M.: Parametrisation and correlation analysis applied to music mood classification. Int. J. Comput. Intell. Stud. 2(1), 4–25 (2013)CrossRefGoogle Scholar
  12. 12.
    Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recogn. 33(1), 25–41 (2000)CrossRefGoogle Scholar
  13. 13.
    Lidy, L., Rauber, A., Pertusa, A., Iñesta, J.M.: Improving genre classification by combination of audio and symbolic descriptors using a transcription system. In: Proceedings of the 8th International Conference on Music Information Retrieval (ISMIR), pp. 61–66 (2007)Google Scholar
  14. 14.
    Mauch, M., Levy, M.: Structural change on multiple time scales as a correlate of musical complexity. In: Proceedings 12th International Society for Music Information Retrieval Conference (ISMIR), pp. 489–494 (2011)Google Scholar
  15. 15.
    McKay, C.: Automatic Music Classification with jMIR. Ph.D. thesis, Department of Music Research, Schulich School of Music, McGill University (2010)Google Scholar
  16. 16.
    McKay, C., Burgoyne, J.A., Hockman, J., Smith, J.B.L., Vigliensoni, G., Fujinaga, I.: Evaluating the genre classification performance of lyrical features relative to audio, symbolic and cultural features. In: Proceedings of the 11th International Society for Music Information Retrieval Conference (ISMIR), pp. 213–218 (2010)Google Scholar
  17. 17.
    Mierswa, I., Morik, K.: Automatic feature extraction for classifying audio data. Mach. Learn. J. 58(2–3), 127–149 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Miranda, E.R., Biles, J.A.: Evolutionary Computer Music. Springer, London (2007)CrossRefGoogle Scholar
  19. 19.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello Coello, C.A.: A survey of multiobjective evolutionary algorithms for data mining: Part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)CrossRefGoogle Scholar
  20. 20.
    Pachet, F., Zils, A.: Evolving automatically high-level music descriptors from acoustic signals. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 42–53. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  21. 21.
    Panda, R., Rocha, B., Paiva, R.P.: Dimensional music emotion recognition: combining standard and melodic audio features. In: Proceedings of the 10th International Symposium on Computer Music Multidisciplinary Research (CMMR), pp. 583–593 (2013)Google Scholar
  22. 22.
    Rötter, G., Vatolkin, I., Weihs, C.: Computational prediction of high-level descriptors of music personal categories. In: Lausen, B., van den Poel, D., Ultsch, A. (eds.) Algorithms from and for Nature and Life, pp. 529–537. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Vatolkin, I.: Improving Supervised Music Classification by Means of Multi-Objective Evolutionary Feature Selection. Ph.D. thesis, TU Dortmund (2013)Google Scholar
  24. 24.
    Zanoni, M., Ciminieri, D., Sarti, A. Tubaro, S.: Searching for dominant high-level features for music information retrieval. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 2025–2029 (2012)Google Scholar
  25. 25.
    Zhu, J., Xue, X., Lu, H.: Musical genre classification by instrumental features. In: Proceedings of the 2004 International Computer Music Conference (ICMC), pp. 580–583 (2004)Google Scholar
  26. 26.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceTU DortmundDortmundGermany
  2. 2.Faculty of StatisticsTU DortmundDortmundGermany

Personalised recommendations