Music with Unconventional Computing: Towards a Step Sequencer from Plasmodium of Physarum Polycephalum

  • Edward Braund
  • Eduardo Miranda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)


The field of computer music has evolved in tandem with advances made in computer science. We are interested in how the developing field of unconventional computation may provide new pathways for music and related technologies. In this paper, we outline our initial work into harnessing the behaviour of the biological computing substrate Physarum polycephalum for a musical step sequencer. The plasmodium of Physarum polycephalum is an amorphous unicellular organism, which moves like a giant amoeba as it navigates its environment for food. Our research manipulates the organism’s route-efficient propagation characteristics in order to create a growth environment for musical/sound arrangement. We experiment with this device in two different scenarios: sample triggering and MIDI note triggering using sonification techniques.


Physarum polycephalum Sonification Unconventional computing Computer music Future music Biomusic Step sequencer Bionic engineering 


  1. 1.
    Doornbusch, P.: Computer sound synthesis in 1951: the music of CSIRAC. Comput. Music J. 28(1), 10–25 (2004)CrossRefGoogle Scholar
  2. 2.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)MathSciNetGoogle Scholar
  3. 3.
    Von Neumann, J.: First draft of a report on the edvac. In: Randall, B. (ed.) The Origins of Digital Computers, pp. 383–392. Springer, New York (1982)CrossRefGoogle Scholar
  4. 4.
    Toffoli, T.: Programmable matter methods. Future Gener. Comput. Syst. 16, 187–201 (1998). CiteseerCrossRefGoogle Scholar
  5. 5.
    Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Computers. Luniver Press, Beckington (2006)Google Scholar
  6. 6.
    Stepney, S.: Programming unconventional computers: dynamics, development, self-reference. Entropy 14(10), 1939–1952 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Braund, E., Miranda, E.: Unconventional computing in music. In: Proceedings of the 9th Conference on Interdisciplinary Musicology - CIM14, Berlin, Germany (2014)Google Scholar
  8. 8.
    Miranda, E.R.: Granular synthesis of sounds by means of a cellular automaton. Leonardo 28(4), 297–300 (1995)CrossRefGoogle Scholar
  9. 9.
    Miranda, E.R., Bull, L., Gueguen, F., Uroukov, I.S.: Computer music meets unconventional computing: towards sound synthesis with in vitro neuronal networks. Comput. Music J. 33(1), 9–18 (2009)CrossRefGoogle Scholar
  10. 10.
    Meyer, R., Stockem, W.: Studies on microplasmodia of physarum polycephalum V: Electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)CrossRefGoogle Scholar
  11. 11.
    Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark. Biophys. Rev. Lett. 6(01n02), 29–57 (2011)CrossRefGoogle Scholar
  12. 12.
    Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)CrossRefGoogle Scholar
  13. 13.
    Adamatzky, A.: Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)CrossRefGoogle Scholar
  14. 14.
    Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot control with biological cells. Biosystems 87(2), 215–223 (2007)CrossRefGoogle Scholar
  15. 15.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)Google Scholar
  16. 16.
    Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. IJUC 6(2), 125–144 (2010)Google Scholar
  17. 17.
    Miranda, E.R., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)CrossRefGoogle Scholar
  18. 18.
    Miranda, E.R.: Harnessing the Intelligence of physarum polycephalum for unconventional computing-aided musical composition. IJUC 10(3), 251–268 (2014)Google Scholar
  19. 19.
    Braund, E.: Unconventional Computer Music with Physarum Polycephalum. Master’s thesis, Plymouth University (2013)Google Scholar
  20. 20.
    Braund, E., Miranda, E.: Music with unconventional computing: a system for physarum polycephalum sound synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S.I. (eds.) CMMR 2013. LNCS, vol. 8905, pp. 175–189. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Braund, E.: Physarm polycephalum step sequencer examples (2015).
  22. 22.
    Coggin, S., Pazun, J.: Dynamic complexity inPhysarum polycephalum shuttle streaming. Protoplasma 194(3–4), 243–249 (1996)CrossRefGoogle Scholar
  23. 23.
    Cifarelli, A., Dimonte, A., Berzina, T., Erokhin, V.: On the loading of slime mold physarum polycephalum with microparticles for unconventional computing application. BioNanoScience 4(1), 92–96 (2014)CrossRefGoogle Scholar
  24. 24.
    PhyChip: Tactile Stimulus x 2 of (Y-crossing), Physarum Polycephalum (2013).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Computer Music Research (ICCMR)Plymouth UniversityPlymouthUK

Personalised recommendations