Automatic Generation of Chord Progressions with an Artificial Immune System

  • María Navarro
  • Marcelo Caetano
  • Gilberto Bernardes
  • Leandro Nunes de Castro
  • Juan Manuel Corchado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)

Abstract

Chord progressions are widely used in music. The automatic generation of chord progressions can be challenging because it depends on many factors, such as the musical context, personal preference, and aesthetic choices. In this work, we propose a penalty function that encodes musical rules to automatically generate chord progressions. Then we use an artificial immune system (AIS) to minimize the penalty function when proposing candidates for the next chord in a sequence. The AIS is capable of finding multiple optima in parallel, resulting in several different chords as appropriate candidates. We performed a listening test to evaluate the chords subjectively and validate the penalty function. We found that chords with a low penalty value were considered better candidates than chords with higher penalty values.

Keywords

Artificial immune systems Chord progressions Harmony Consonance 

References

  1. 1.
    Schoenberg, S.: The Musical Idea and the Logic, Technique and Art of its Presentation. Indiana University Press, Bloomington (2006)Google Scholar
  2. 2.
    Lerdahl, F.: Tonal pitch space. Music Percept. 5, 315–349 (1998)CrossRefGoogle Scholar
  3. 3.
    Agmon, E.: Functional harmony revisited: a prototype-theoretic approach. Music Theory Spectrum 17(2), 196–214 (1995)CrossRefGoogle Scholar
  4. 4.
    Stock, J.: The application of schenkerian analysis to ethnomusicology: problems and possibilities. Music Anal. 12, 215–240 (1993)CrossRefGoogle Scholar
  5. 5.
    Papadopoulos, G., Wiggins, G.: AI methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, pp. 110–117 Edinburgh, UK (1999)Google Scholar
  6. 6.
    Ebciouglu, K.: An expert system for harmonizing chorales in the style of js bach. J. Log. Program. 8(1), 145–185 (1990)CrossRefGoogle Scholar
  7. 7.
    Steedman, M.J.: A generative grammar for jazz chord sequences. Music Percept. 2(1), 52–77 (1984)CrossRefGoogle Scholar
  8. 8.
    Eigenfeldt, A., Pasquier, P.: Realtime generation of harmonic progressions using controlled markov selection. In: Proceedings of 1st International Conference on Computational Creativity, pp. 16–25 (2010)Google Scholar
  9. 9.
    Moroni, A., Manzolli, J., Von Zuben, F., Gudwin, R.: Vox populi: an interactive evolutionary system for algorithmic music composition. Leonardo Music J. 10, 49–54 (2000)CrossRefGoogle Scholar
  10. 10.
    Anders, T., Miranda, E.R.: A computational model that generalises schoenberg’s guidelines for favourable chord progressions. In: 6th Sound and Music Computing Conference, Porto, Portugal (2009)Google Scholar
  11. 11.
    Paiement, J.F., Eck, D., Bengio, S.: A probabilistic model for chord progressions. In: Proceedings of International Conference on Music Information Retrieval, pp. 312–319 (2005)Google Scholar
  12. 12.
    Fukumoto, M.: Creation of music chord progression suited for user’s feelings based on interactive genetic algorithm. In: 2014 IIAI 3rd International Conference on Advanced Applied Informatics (IIAIAAI), pp. 757–762. IEEE (2014)Google Scholar
  13. 13.
    De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Crocker, R.L.: Pythagorean mathematics and music. J. Aesthet. Art Crit. 22, 325–335 (1964)CrossRefGoogle Scholar
  15. 15.
    Knobloch, E.: Euler transgressing limits: the infinite and music theory. Quaderns d’història de l’enginyeria 9, 9–24 (2008)Google Scholar
  16. 16.
    Babbitt, M.: The structure and function of musical theory: I. In: College Music Symposium, JSTOR 49–60 (1965)Google Scholar
  17. 17.
    Benward, B., Saker, M.: Music in Theory and Practice. McGraw-Hill, London (2003)Google Scholar
  18. 18.
    de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, vol. 1, pp. 699–704. IEEE (2002)Google Scholar
  19. 19.
    Murphy, K.: Janeway’s Immunobiology. Garland Science, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • María Navarro
    • 1
  • Marcelo Caetano
    • 3
  • Gilberto Bernardes
    • 3
  • Leandro Nunes de Castro
    • 2
  • Juan Manuel Corchado
    • 1
  1. 1.Department of Computer ScienceUniversity of SalamancaSalamancaSpain
  2. 2.Natural Computing Laboratory, Graduate Program in Computing and Electrical EngineeringMackenzie Presbyterian UniversitySão PauloBrazil
  3. 3.INESC PortoPortoPortugal

Personalised recommendations