Generative Music with Stochastic Diffusion Search

  • Asmaa Majid Al-Rifaie
  • Mohammad Majid Al-Rifaie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9027)

Abstract

This paper introduces an approach for using a swarm intelligence algorithm, Stochastic Diffusion Search (SDS) – inspired by one species of ants, Leptothorax acervorum – in order to generate music from plain text. In this approach, SDS is adapted in such a way to vocalise the agents, to hear their “chit-chat”. While the generated music depends on the input text, the algorithm’s search capability in locating the words in the input text is reflected in the duration and dynamic of the resulting musical notes. In other words, the generated music depends on the behaviour of the algorithm and the communication between its agents. This novel approach, while staying loyal to the original input text, when run each time, ‘vocalises’ the input text in varying ‘flavours’.

Keywords

Swarm intelligence Stochastic diffusion search Generative music Nature-inspired algorithm 

References

  1. 1.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, vol. 43. IEEE, New York (1995)Google Scholar
  2. 2.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)MATHGoogle Scholar
  3. 3.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  4. 4.
    Miranda, E.R., Al Biles, J.: Evolutionary Computer Music. Springer, London (2007)CrossRefGoogle Scholar
  5. 5.
    Al-Rifaie, M.M., Bishop, M.: Stochastic diffusion search review. Paladyn J. Behav. Rob. 4, 155–173 (2013)Google Scholar
  6. 6.
    Bishop, J.: Stochastic searching networks. In: Proceedings of the 1st IEE Conference on Artificial Neural Networks, London, pp. 329–331 (1989)Google Scholar
  7. 7.
    Möglich, M., Maschwitz, U., Hölldobler, B.: Tandem calling: a new kind of signal in ant communication. Science 186(4168), 1046–1047 (1974)CrossRefGoogle Scholar
  8. 8.
    Blackwell, T.: Swarming and music. In: Miranda, E.R., Al-Biles, J. (eds.) Evolutionary Computer Music, pp. 194–217. Springer, London (2007)CrossRefGoogle Scholar
  9. 9.
    Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. In: Proceedings of the 3rd International Conference on Generative Art, vol. 17, pp. 215–226 (2000)Google Scholar
  10. 10.
    Herber., N.: Experiments with particle swarm optimization (2004–2011). http://www.x-tet.com/pf2004-10/pso.html
  11. 11.
    Alt, F., Pfleging, B., Schmidt, A.: Sonify-a platform for the sonification of text messages. In: Mensch & Computer, pp. 149–158 (2013)Google Scholar
  12. 12.
    Zim, H.S.: Codes and Secret Writing. W. Morrow, New York (1948)Google Scholar
  13. 13.
    Brown, A.R.: Sound Musicianship: Understanding the Crafts of Music, vol. 4. Cambridge Scholars Publishing, Newcastle upon Tyne (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Asmaa Majid Al-Rifaie
    • 1
  • Mohammad Majid Al-Rifaie
    • 2
  1. 1.Department of ComputingGoldsmiths University of London International ProgrammeLondonUK
  2. 2.Department of ComputingGoldsmiths University of LondonLondonUK

Personalised recommendations