Logical Modeling and Analysis of Regulatory Genetic Networks in a Non Monotonic Framework

  • Nicolas Mobilia
  • Alexandre Rocca
  • Samuel Chorlton
  • Eric Fanchon
  • Laurent Trilling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9043)


We present a constraint based declarative approach for analyzing qualitatively genetic regulatory networks (GRNs) with the discrete formalism of R. Thomas. For this purpose, we use the logic programming technology ASP (Answer Set Programming) whose related logic is non monotonic. Our aim is twofold. First, we give a formal modeling of both Thomas’ GRNs and biological data like experimental behaviors and gene interactions and we evaluate the declarative approach on three real biological applications. Secondly, for taking into account both gene interaction properties which are only generally true and automatic inconsistency repairing, we introduce an optimized modeling which leads us to exhibit new logical expressions for the conjunction of defaults and to show that they can be applied safely to Thomas’ GRNs.


computational systems biology gene networks discrete modeling AI-oriented declarative approach non monotonic logic Answer Set Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alves, F., Dilao, R.: Modeling segmental patterning in drosophila: Maternal and gap genes. J. Theor. Biol. 241, 342–359 (2006)Google Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, New York (2003)Google Scholar
  3. 3.
    Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., De Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18), i603–i610 (2010)Google Scholar
  4. 4.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)Google Scholar
  5. 5.
    Besnard, P.: An Introduction to Default Logic. Springer (1989)Google Scholar
  6. 6.
    Cantone, I., Marucci, L., Iorio, F., Ricci, M.A., Belcastro, V., Bansal, M., Santini, S., di Bernardo, M., di Bernardo, D., Cosma, M.P.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)Google Scholar
  7. 7.
    Corblin, F., Fanchon, E., Trilling, L., Chaouiya, C., Thieffry, D.: Automatic inference of regulatory and dynamical properties from incomplete gene interaction and expression data. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 25–30. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Corblin, F., Tripodi, S., Fanchon, É., Ropers, D., Trilling, L.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98, 91–104 (2009)Google Scholar
  9. 9.
    Farinas de Cerro, L., Inoue, K. (eds.): Logical Modeling of Biological Systems, pp. 167–206. Wiley, Chichester (2014)Google Scholar
  10. 10.
    Fayruzov, T., Janssen, J., Vermeir, D., Cornelis, C., Cock, M.D.: Modelling gene and protein regulatory networks with answer set programming. Int. J. Data Min. Bioinformatics 5(2), 209–229 (2011)Google Scholar
  11. 11.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (version 3.x) (October 2010)Google Scholar
  12. 12.
    Jaeger, J., Blagov, M., Kosman, D., Kozlov, K.N., Myasnikova, M.E., Surkova, S., Vanario-Alonso, C.E., Samsonova, M., Sharp, D.H., Reinitz, J.: Dynamical analysis of regulatory interactions in the gap gene system of drosophila melanogaster. Genetics 167, 1721–1737 (2004)Google Scholar
  13. 13.
    Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative simulation of the carbon starvation response in escherichia coli. Biosystems 84(2), 124–152 (2006)Google Scholar
  14. 14.
    Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211, 115–141 (2001)Google Scholar
  15. 15.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. logical analysis of regulatory networks in terms of feedback circuits. CHAOS 11(1), 180–195 (2001)Google Scholar
  16. 16.
    Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Gebser, M., Nicolas, J., Saez-Rodriguez, J., Schaub, T., Siegel, A.: Learning boolean logic models of signaling networks with ASP. Theoretical Computer Science (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicolas Mobilia
    • 1
  • Alexandre Rocca
    • 1
  • Samuel Chorlton
    • 2
  • Eric Fanchon
    • 1
  • Laurent Trilling
    • 1
  1. 1.Laboratoire TIMC-IMAGUniversité de GrenobleFrance
  2. 2.Department of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations