Advertisement

A Computational Method for the Rate Estimation of Evolutionary Transpositions

  • Nikita Alexeev
  • Rustem Aidagulov
  • Max A. Alekseyev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9043)

Abstract

Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems.

We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.

Keywords

Mammalian Genome Genome Rearrangement Mammalian Evolution Synteny Block Transposition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolution. Theoretical Computer Science 395(2), 193–202 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar
  3. 3.
    Ranz, J., González, J., Casals, F., Ruiz, A.: Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 57(6), 1325–1335 (2003)CrossRefGoogle Scholar
  4. 4.
    Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM Journal on Discrete Mathematics 26(3), 1148–1180 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpositions. Journal of Computational Biology 14(5), 615–636 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Fertin, G.: Combinatorics of genome rearrangements. MIT Press (2009)Google Scholar
  7. 7.
    Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172(1), GC11–GC17 (1996)Google Scholar
  8. 8.
    Jiang, S., Alekseyev, M.: Weighted genomic distance can hardly impose a bound on the proportion of transpositions. Research in Computational Molecular Biology, 124–133 (2011)Google Scholar
  9. 9.
    Lin, Y., Moret, B.M.: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24(13), i114–i122 (2008)Google Scholar
  10. 10.
    Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)Google Scholar
  11. 11.
    Nadeau, J.H., Taylor, B.A.: Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. Proceedings of the National Academy of Sciences 81(3), 814–818 (1984)CrossRefGoogle Scholar
  12. 12.
    Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences 100, 7672–7677 (2003)CrossRefGoogle Scholar
  13. 13.
    Alekseyev, M.A., Pevzner, P.A.: Comparative Genomics Reveals Birth and Death of Fragile Regions in Mammalian Evolution. Genome Biology 11(11), R117 (2010)Google Scholar
  14. 14.
    Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16(12), 1557–1565 (2006)CrossRefGoogle Scholar
  15. 15.
    Alekseyev, M., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Research, gr–082784 (2009)Google Scholar
  16. 16.
    Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. Journal of Computational Biology 15(8), 1117–1131 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nikita Alexeev
    • 1
    • 2
  • Rustem Aidagulov
    • 3
  • Max A. Alekseyev
    • 1
  1. 1.Computational Biology InstituteGeorge Washington UniversityAshburnUSA
  2. 2.Chebyshev LaboratorySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations