Advertisement

Study of the Histogram of the Hippocampus in MRI Using the α-stable Distribution

  • Diego Salas-Gonzalez
  • Oliver Horeth
  • Elmar W. Lang
  • Juan M. Górriz
  • Javier Ramírez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9043)

Abstract

The hippocampus is a grey matter region of the brain which is known to be affected by Alzheimer’s disease at the earliest stage. Its segmentation is important in order to measure its degree of atrophy.

We study the histogram of the intensity values of the hippocampus for 18 magnetic resonance images from the Internet Brain Segmentation Repository. In this dataset, manually-guided segmentation results are also provided. We use this database and the manual segmentation information to select the hippocampus of each of the images for the study of its histogram.

The histogram of intensity values of the left and right hippocampus for each image in the database are unimodal, heavy tailed and lightly skewed, for that reason, they can be fitted in a parsimonious way using the alpha-stable distribution. This results can be used to design a procedure to perform the segmentation of the hippocampus.

Keywords

Magnetic Resonance Image brain processing hippocampus alpha-stable distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with alzheimer’s disease from structural mri: A comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011); Multivariate Decoding and Brain ReadingGoogle Scholar
  2. 2.
    Padilla, P., López, M., Górriz, J., Ramírez, J., Salas-Gonzalez, D., Álvarez, I.: Nmf-svm based cad tool applied to functional brain images for the diagnosis of alzheimer’s disease. IEEE Transactions on Medical Imaging 31(2), 207–216 (2012)CrossRefGoogle Scholar
  3. 3.
    Barnes, J., Scahill, R.I., Boyes, R.G., Frost, C., Lewis, E.B., Rossor, C.L., Rossor, M.N., Fox, N.C.: Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. NeuroImage 23(2), 574–581 (2004)CrossRefGoogle Scholar
  4. 4.
    Henneman, W., Sluimer, J.D., Barnes, J., van der Flier, W.M., Sluimer, I.C., Fox, N.C., Scheltens, P., Vrenken, H., Barkhof, F.: Hippocampal atrophy rates in alzheimer disease: Added value over whole brain volume measures. Neurology 72(11), 999–1007 (2009)CrossRefGoogle Scholar
  5. 5.
    Jack, C.R., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., Kokmen, E.: Prediction of ad with mri-based hippocampal volume in mild cognitive impairment. Neurology 52(7), 1397–1403 (1999)CrossRefGoogle Scholar
  6. 6.
    Nolan, J.P.: Numerical calculation of stable densities and distribution functions. Communications in Statistics. Stochastic Models 13(4), 759–774 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Diego Salas-Gonzalez
    • 1
  • Oliver Horeth
    • 1
  • Elmar W. Lang
    • 1
  • Juan M. Górriz
    • 2
  • Javier Ramírez
    • 2
  1. 1.CIML GroupUniversity of RegensburgGermany
  2. 2.SiPBA GroupUniversity of GranadaSpain

Personalised recommendations