A Semantic Layer for Unifying and Exploring Biomedical Document Curation Results

  • Pedro Sernadela
  • Pedro Lopes
  • David Campos
  • Sérgio Matos
  • José Luís Oliveira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9043)


Tackling the ever-growing amount of specialized literature in the life sciences domain is a paramount challenge. Various scientific workflows depend on using domain knowledge from resources that summarize, in structured form, validated information extracted from scientific publications. Manual curation of these data is a demanding task, and latest strategies use computerized solutions to aid in the analysis, extraction and storage of relevant concepts and their respective attributes and relationships. The outcome of these complex document curation workflows provides valuable insights into the overwhelming amount of biomedical information being produced. Yet, the majority of automated and interactive annotation tools are not open, limiting access to knowledge and reducing the potential scope of the manually curated information. In this manuscript, we propose an interoperable semantic layer to unify document curation results and enable their proper exploration through multiple interfaces geared towards bioinformatics developers and general life sciences researchers. This enables a unique scenario where results from computational annotation tools are harmonized and further integrated into rich semantic knowledge bases, providing a solid foundation for discovering knowledge.


Document curation text-mining semantic web knowledge discovery data integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunter, L., Cohen, K.B.: Biomedical language processing: what’s beyond PubMed? Mol. Cell. 21, 589–594 (2006)CrossRefGoogle Scholar
  2. 2.
    Campos, D., Matos, S., Oliveira, J.: Current Methodologies for Biomedical Named Entity Recognition. Biol. Knowl. Discov. Handb. Preprocessing, Mining, Postprocessing Biol. Data. 839–868 (2012)Google Scholar
  3. 3.
    Alex, B., Grover, C., Haddow, B.: Assisted Curation: Does Text Mining Really Help? In: Pacific Symp. Biocomput., vol. 13 (2008)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  5. 5.
    Wild, D.J., Ding, Y., Sheth, A.P., Harland, L., Gifford, E.M., Lajiness, M.S.: Systems chemical biology and the Semantic Web: what they mean for the future of drug discovery research. Drug Discov. Today 17, 469–474 (2012)CrossRefGoogle Scholar
  6. 6.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)Google Scholar
  7. 7.
    Franzén, K., Eriksson, G., Olsson, F.: Protein names and how to find them. Int. J. Med. Inform. 67(1), 49–61 (2002)CrossRefGoogle Scholar
  8. 8.
    Nadkarni, P.M., Ohno-Machado, L., Chapman, W.W.: Natural language processing: an introduction. J. Am. Med. Inform. Assoc. 18, 544–551 (2011)CrossRefGoogle Scholar
  9. 9.
    Schuemie, M., Kors, J., Mons, B.: Word sense disambiguation in the biomedical domain: an overview. J. Comput. Biol. (2005)Google Scholar
  10. 10.
    Zhu, F., Patumcharoenpol, P., Zhang, C., Yang, Y., Chan, J., Meechai, A., Vongsangnak, W., Shen, B.: Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46, 200–211 (2013)CrossRefGoogle Scholar
  11. 11.
    Bui, Q.-C., Katrenko, S., Sloot, P.M.A.: A hybrid approach to extract protein-protein interactions. Bioinformatics 27, 259–265 (2011)CrossRefGoogle Scholar
  12. 12.
    Hoffmann, R., Valencia, A.: Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics. 21(suppl. 2), ii252–ii258 (2005)Google Scholar
  13. 13.
    Tari, L., Anwar, S., Liang, S., Cai, J., Baral, C.: Discovering drug-drug interactions: a text-mining and reasoning approach based on properties of drug metabolism. Bioinformatics 26, i547–i553 (2010)Google Scholar
  14. 14.
    Tsuruoka, Y., Tsujii, J., Ananiadou, S.: FACTA: a text search engine for finding associated biomedical concepts. Bioinformatics 24, 2559–2560 (2008)CrossRefGoogle Scholar
  15. 15.
    Stenetorp, P., Pyysalo, S., Topić, G.: BRAT: a web-based tool for NLP-assisted text annotation. In: Proc. Demonstr. 13th Conf. Eur. Chapter Assoc. Comput. Linguist., pp. 102–107 (2012)Google Scholar
  16. 16.
    Salgado, D., Krallinger, M., Depaule, M., Drula, E., Tendulkar, A.V., Leitner, F., Valencia, A., Marcelle, C.: MyMiner: a web application for computer-assisted biocuration and text annotation. Bioinformatics 28, 2285–2287 (2012)CrossRefGoogle Scholar
  17. 17.
    Rak, R., Rowley, A., Black, W., Ananiadou, S.: Argo: an integrative, interactive, text mining-based workbench supporting curation. Database (Oxford), bas010 (2012)Google Scholar
  18. 18.
    Campos, D., Lourenco, J., Matos, S., Oliveira, J.L.: Egas: a collaborative and interactive document curation platform. Database 2014 (2014)Google Scholar
  19. 19.
    Comeau, D.C., Islamaj Doğan, R., Ciccarese, P., Cohen, K.B., Krallinger, M., Leitner, F., Lu, Z., Peng, Y., Rinaldi, F., Torii, M., Valencia, A., Verspoor, K., Wiegers, T.C., Wu, C.H., Wilbur, W.J.: BioC: a minimalist approach to interoperability for biomedical text processing. Database (Oxford), bat064 (2013)Google Scholar
  20. 20.
    Machado, C.M., Rebholz-Schuhmann, D., Freitas, A.T., Couto, F.M.: The semantic web in translational medicine: current applications and future directions. Brief. Bioinform. (2013)Google Scholar
  21. 21.
    Lopes, P., Oliveira, J.L.: COEUS: “semantic web in a box” for biomedical applications. J. Biomed. Semantics. 3, 11 (2012)CrossRefGoogle Scholar
  22. 22.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation. J. Biomed. Semantics. 2, 8 (2011)CrossRefGoogle Scholar
  24. 24.
    Sernadela, P., van der Horst, E., Thompson, M., Lopes, P., Roos, M., Oliveira, J.L.: A Nanopublishing Architecture for Biomedical Data. In: Saez-Rodriguez, J., Rocha, M.P., Fdez-Riverola, F., De Paz Santana, J.F. (eds.) 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014). AISC, vol. 294, pp. 277–284. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  25. 25.
    Laurila, J., Naderi, N., Witte, R.: Algorithms and semantic infrastructure for mutation impact extraction and grounding. BMC Genomics, S24 (2010)Google Scholar
  26. 26.
    Coulet, A., Garten, Y., Dumontier, M., Altman, R.B., Musen, M.A., Shah, N.H.: Integration and publication of heterogeneous text-mined relationships on the Semantic Web. J. Biomed. Semantics 2(suppl. 2), S10 (2011)Google Scholar
  27. 27.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight. In: Proceedings of the 7th International Conference on Semantic Systems, I-Semantics 2011, pp. 1–8. ACM Press, New York (2011)Google Scholar
  28. 28.
    Ciccarese, P., Ocana, M., Clark, T.: Open semantic annotation of scientific publications using DOMEO. J. Biomed. Semantics 3(suppl. 1), S1 (2012)Google Scholar
  29. 29.
    Ciccarese, P., Ocana, M., Garcia Castro, L.J., Das, S., Clark, T.: An open annotation ontology for science on web 3.0. J. Biomed. Semantics 2(suppl. 2), S4 (2011)Google Scholar
  30. 30.
    Spasic, I., Ananiadou, S., McNaught, J., Kumar, A.: Text mining and ontologies in biomedicine: Making sense of raw text. Brief. Bioinform. 6, 239–251 (2005)CrossRefGoogle Scholar
  31. 31.
    Khelif, K., Dieng-Kuntz, R., Barbry, P.: An Ontology-based Approach to Support Text Mining and Information Retrieval in the Biological Domain. J. UCS (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pedro Sernadela
    • 1
  • Pedro Lopes
    • 1
  • David Campos
    • 2
  • Sérgio Matos
    • 1
  • José Luís Oliveira
    • 1
  1. 1.DETI/IEETAUniversidade de AveiroAveiroPortugal
  2. 2.BMD SoftwareAveiroPortugal

Personalised recommendations