Irrigation of the Root Canal System by Laser Activation (LAI): PIPS Photon-Induced Photoacoustic Streaming

Abstract

Root canal debridement and disinfection control are two of the main steps in root canal therapy. Control of bacterial load from an infected root canal before obturation is necessary to have a more predictable outcome. Bacteria will be present as biofilm colonies and will be responsible to establish disease and infection. Inside the root canal, it will be attached to the canal walls, well within dentinal tubules, fins, lateral canals, and foramina. In a different study, Nair found the presence of bacteria within these areas such as the root canal, fins, webs, isthmuses, etc., even after cleaning, shaping, and filling of the root canal system. When bacteria colonize the root canal system, it becomes very hard to effectively remove it from these inaccessible areas.

During root canal therapy, the endodontist faces all types of complications, one of which is the root canal morphology. There are several studies where several authors have verified the complexity of the root canal system. Root canals can present difficulty with accessibility, and in some areas of the root canal system, accessibility by instrumentation, irrigation, or even intra-canal medication is not possible. Because of this inaccessibility, different irrigation techniques have been proposed in order to obtain better disinfection rates.

Keywords

Root canal debridement Photon-induced photoacoustic streaming PIPS PIPS protocol Irrigation Root canal system 

References

  1. 1.
    Schilder H. Cleaning and shaping of the root canal. Dent Clin North Am. 1974;18(2):269–96.PubMedGoogle Scholar
  2. 2.
    Bystrom A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981;89(4):321–8.PubMedGoogle Scholar
  3. 3.
    Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16(10):498–504.PubMedCrossRefGoogle Scholar
  4. 4.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112(10):1466–77.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod. 2007;33(6):652–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Nair PN. Pathogenesis of apical periodontitis and the cases of endodontic failures. Crit Rev Oral Biol Med. 2004;15(6):348–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Nair PNR, Henry S, Cano V, Vera J. Microbial status of the apical root canal system of human mandibular first molars with primary apical periodontitis after one visit endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:231–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Hess W. Formation of root canals in human teeth. J Am Den Assoc. 1921;8:704–34.Google Scholar
  9. 9.
    Wine FS, Healey HJ, Gerstein H, Evanson L. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.CrossRefGoogle Scholar
  10. 10.
    Pineda F, Kuttler Y. Mesiodistal and buccolingual roentgenographic investigation of 7,275 root canals. Oral Surg Oral Med Oral Pathol. 1972;33:101–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Verticcu FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984;58:589–99.CrossRefGoogle Scholar
  12. 12.
    Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Topics. 2005;10:3–29.CrossRefGoogle Scholar
  13. 13.
    Arnold M, Ricucci D, Siqueira Jr JF. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report. J Endod. 2013;39(9):117–84.CrossRefGoogle Scholar
  14. 14.
    Sjogren U, Figdor D, Spangberg L, Sundqvist G. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing. J Endod. 1990;16(12):589–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Safavi KE, Dowdenn WE, Introcaso JH, Langeland K. A comparison of antimicrobial effects of calcium hydroxide and iodine-potassium iodide. J Endod. 1985;11(10):454–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Weller RN, Brady JM, Bernier WE. Efficacy of ultrasonic cleaning. J Endod. 1980;6(9):740–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Van der Sluis LW, Wu MK, Wesselink PR. The efficacy of ultrasonic irrigation to remove artificially placed dentine debris from human root canals prepares using instruments of varying taper. Int Endod J. 2005;38(10):746–8.Google Scholar
  18. 18.
    Ahmad M, Pitt Ford TJ, Crum LA. Ultrasonic debridement of root canals: acoustic streaming and its possible role. J Endod. 1987;13(10):490–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Stern RH, Sognnaes RF. Laser effect on dental hard tissues. A preliminary report. J South Calif Dent Assoc. 1965;33:17–9.PubMedGoogle Scholar
  20. 20.
    Meral G, Tasar F, Kocagøz S, Sener C. Factors affecting the antibacterial effects of Nd:YAG Laser in vivo. Laser Surg Med. 2003;32(3):197–202.CrossRefGoogle Scholar
  21. 21.
    Nm S, Roth CA. Ruby laser as a microsurgical instrument. Science. 1963;141:46–7.CrossRefGoogle Scholar
  22. 22.
    Klein E, Fine S, Ambrus J. Interaction of laser irradiation with biological system. III. Studies on biological systems in vitro. Fed Proc. 1965;14:5101–10.Google Scholar
  23. 23.
    McGuff PE, Bell EJ. The effect of laser irradiation on bacteria. Med Biol III. 1966;16:191–3.Google Scholar
  24. 24.
    Pini R, Salimbeni R, Vannini M. Laser dentistry: a new application of excimer laser in root canal therapy. Laser Surg Med. 1989;9:352–7.CrossRefGoogle Scholar
  25. 25.
    Weichman JA, Johnson FM. Laser in endodontics. A preliminary investigation. Oral Surg Oral Med Oral Pathol. 1971;31:416–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Weichman JA, Johnsosn FM, Nitta LK. Laser use in endodontics. Part II. J Oral Surg. 1972;34:828–30.CrossRefGoogle Scholar
  27. 27.
    Dederich D, Zachariensen K, Tulip J. Scanning electron microscopic analysis of root canal wall dentin follow Neodymium Yttrium garnet laser irradiation. J Endod. 1984;10:428.PubMedCrossRefGoogle Scholar
  28. 28.
    Levy G. Cleaning and shaping the root canal with Nd:YAG laser beam: a comparative study. J Endod. 1992;18:123–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Kantola S. Laser induced effects on the tooth structure. IV. A study of changes in the calcium and phosphorous contents in dentine by electron probe microanalysis. Acta Odontol Scand. 1972;30:463–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Gordon W, Atabakhsh VA, Meza F, Doms A, Nissan R, Nissan R, Risoiu I, Stevens RH. The antimicrobial efficacy of the erbium, chromium:yttrium-scandium-gallium-garnet laser with emitting tips on the root canal dentin walls infected with Enterococcus faecalis. J Am Dent Assoc. 2007;138(7):992–1002.PubMedCrossRefGoogle Scholar
  31. 31.
    Farges P, Nahas P, Bonin P. In vitro study of a Nd:YAG laser in endodontic retreatment. J Endod. 1998;24:359–63.CrossRefGoogle Scholar
  32. 32.
    Folwaczny M, Mehl A, Jordan C, Hickel R. Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals. J Endod. 2002;28:24–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Peters OA, Schönenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34(3):221–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Kerekes K, Tronstad L. Morphological observation on the root canals of human molars. J Endod. 1977;3(3):114–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu MKL, Wesselink PR. A primary observation on the preparation and obturation of oval canals. Int Endod J. 2001;34(2):137–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Tatsuta CT, Morgan LA, Baumgartner JC, Adey JD. Effect of calcium hydroxide and four irrigation regimens on instrumented and uninstrumented canal wall topography. J Endod. 1999;25(2):93–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Crane AB. A practicable root canal technique. Philadelphia: Lea & Febinger; 1920.Google Scholar
  38. 38.
    Zehnder M, Kosicki D, Luder H, Sener B, Waltimo T. Tissue – dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(6):756–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Van der Sluis LW, Vogels MP, Verhaagen B, Macedo R, Wesselink PR. Study on the influence of refreshment/activation cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant. J Endod. 2010;36(4):737–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams AR. Disorganization and disruption of mammalian and amoeboid cells by acoustic microstreaming. J Acoust Soc Am. 1972;52:688–93.CrossRefGoogle Scholar
  41. 41.
    Peters OA, Bardsley S, Fong J, Pandher G, Divito E. Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod. 2011;37(7):1008–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Jaramillo DE, Aprecio R, Angelov N, Divito E, McClammy TV. Efficacy of photon induced photoacoustic streaming (PIPS) on the root canals infected with Enterococcus faecalis: a pilot study. Endod Prac. 2012;7(3):28–32.Google Scholar
  43. 43.
    Divito E, Peters OA, Olivi G. Effectiveness of the erbium:YAG laser and new design radial and stripped tips in removing the smear layer after toot canal instrumentation. Laser Med Scue. 2012;27:273–80.CrossRefGoogle Scholar
  44. 44.
    Saunders EM. In vivo findings associated with heat generation during thermomechanical compaction of gutta-percha. 1. Temperature levels at the external surface of the root. Int Endod J. 1990;23(5):263–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Sonntag KD, Kutzman B, Burkes J, Hoke J, Moshonov J. Pulpal response to cavity preparation with the Er:YAG and Mark III free electron lasers. Oral Sug Oral Med Oral Pathol Oral Radiol Endod. 1996;81:695–702.CrossRefGoogle Scholar
  46. 46.
    Armengol V, Jean A, Marion D. Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod. 2000;26(3):138–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci. 2004;3(5):412–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Lim Z, Cheng JL, Kim TW, Teo EG, Wong J, George S, Kishen A. Light-activated disinfection: an alternative endodontic disinfection strategy. Aust Dent J. 2009;54(2):108–14.PubMedCrossRefGoogle Scholar
  49. 49.
    George S, Kishen A. Influence of photosensitizer solvent on the mechanisms of photoactivated killing of enterococcus faecalis. Photochem Photobiol. 2008;84(3):734–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Boutsioukis C, Lambdrianidis T, Kastrinakis E. Irrigant flow within a prepared root canal using various flow rates: a computational fluid dynamic study. Int Endod J. 2009;42(2):144–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Boutsioukis C, Kastrinakis E, Lambrianidis T, Verhaagen B, Versluis M, van der Sluis LW. Formation and removal of apical vapor lock during syringe irrigation. A combined experimental and computational fluid dynamics approach. Int Endod J. 2014;47(2):191–201.PubMedCrossRefGoogle Scholar
  52. 52.
    Hsieh YD, Gau CH, Kung Wu SF, Shen EC, Hsu PW, Fu E. Dynamic recording of irrigating fluid distribution in the root canals using thermal image analysis. Int Endod J. 2007;40(1):11–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, Haapasalo M. Three-dimensional numeric simulation of root canal irrigant flow with different irrigation needles. J Endod. 2010;36(5):884–9.PubMedCrossRefGoogle Scholar
  54. 54.
    van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40(6):415–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Fincham AM, Jaramillo DE, Divito E, Peters OA. Irrigant flow during Photo Induced Photoacoustic streaming (PIPS) using micro digital particle image velocimetry (μDPIV): a pilot study. IEJ. 2014;47:659–66.Google Scholar
  56. 56.
    Ordinola-Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. Int Endod J. 2013. doi: 10.1111/iej/12202.
  57. 57.
    Jaramillo DE, Aguilar E, Aprecio RM, Tran K. Dentin disinfection using PIPS and conventional needle irrigation. LLUSD CDR, 2011. Unpublished data.Google Scholar
  58. 58.
    Alsharhrani M, Divito E, Hughes C, Nathanson D, Huang G. Enhanced removal of enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus Photon Induced Photoacoustic Streaming: an in vitro study. Photomed Laser Surg. 2014;32(5):524–30. doi: 10.1089/pho2014.3714.
  59. 59.
    Vera J, Siqueira Jr JF, Ricucci D, Loghin S, Fernandes N, Flores B, Cruz AG. One-versus two-visit endodontic treatment of teeth with apical periodontitis: a histobacteriological study. J Endod. 2012;38(8):1040–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Lloyd A, Uhles J, Clement DJ, Garcia-Godoy F. Elimination of intracanal tissue and debris through a novel laser-activated system assessed using high-resolution micro-computed tomography: a pilot study. Jendod, 2014:40(4):584–7. doi:http://dx.doi.org/10.1016/j.joen.2013.10.040.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of EndodonticsUniversity of Texas Health Science Center at Houston, School of DentistryHoustonUSA

Personalised recommendations