A Flexible and Compact Hardware Architecture for the SIMON Block Cipher

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8898)


SIMON is a recent, light-weight block cipher developed by NSA. Previous work on SIMON shows that it is a very promising alternative of AES for resource-constrained platforms. While SIMON offers a range of block sizes and key lengths, a straightforward implementation would select fixed values in order to achieve a compact design. In contrast, we propose a flexible hardware architecture on FPGAs that still preserves the compactness of SIMON. The proposed implementation can execute all configurations of SIMON, and thus provides a versatile architecture that enables adaptive security using a variable key-size. Moreover, it also reduces the inefficiency of encrypting slightly longer messages by supporting a variable block-size. The implementation results show that the proposed architecture occupies 90 and 32 slices on Spartan-3 and Spartan-6 FPGAs, respectively. To our best knowledge, these area results are smaller than other block ciphers of similar security level. Furthermore, we also quantify the cost of flexibility and show the trade-off between the security level, throughput and area.


Lightweight cryptography Block ciphers Flexible architectures SIMON FPGA 


  1. 1.
    Aysu, A., Gulcan, E., Schaumont, P.: SIMON says: Break area records of block ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)CrossRefGoogle Scholar
  2. 2.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers (2013)Google Scholar
  3. 3.
    Chaves, R.: Compact CLEFIA implementation on FPGAs. In: Athanas, P., Pnevmatikatos, D., Sklavos, N. (eds.) Embedded Systems Design with FPGAs, pp. 225–243. Springer, New York (2013). http://dx.doi.org/10.1007/978-1-4614-1362-2_10
  4. 4.
    Chu, J., Benaissa, M.: Low area memory-free FPGA implementation of the AES algorithm. In: 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 623–626, August 2012Google Scholar
  5. 5.
    Cook, D.L.: Elastic block ciphers. Ph.D. thesis, Columbia University (2006)Google Scholar
  6. 6.
    DARPA: SHIELD: supply chain hardware integrity for electronics defense proposers day, February 2014Google Scholar
  7. 7.
    DARPA: Tiny, cheap, foolproof: Seeking new component to counter counterfeit electronics, February 2014. http://www.darpa.mil/NewsEvents/Releases/2014/02/24.aspx
  8. 8.
    FIPS PUB 197: AES: Advanced encryption standard. Federal Information Processing Standards Publication (2001)Google Scholar
  9. 9.
    Guneysu, T., Kasper, T., Novotny, M., Paar, C., Rupp, A.: Cryptanalysis with COPACOBANA. IEEE Trans. Comput. 57(11), 1498–1513 (2008)CrossRefMathSciNetGoogle Scholar
  10. 10.
    ISO/IEC 29192–2:2012: Information technology - security techniques - lightweight cryptography - part 2: Block ciphers (2012)Google Scholar
  11. 11.
    Kaps, J.-P.: Chai-Tea, Cryptographic Hardware Implementations of xTEA. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 363–375. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Kocher, P., Lee, R., McGraw, G., Raghunathan, A.: Security as a new dimension in embedded system design. In: Proceedings of the 41st Annual Design Automation Conference, DAC 2004, pp. 753–760. ACM, New York (2004). http://doi.acm.org/10.1145/996566.996771, moderator-Ravi, Srivaths
  13. 13.
    Li, H.: Efficient and flexible architecture for AES. IEE Proc. Circuits, Devices Syst. 153(6), 533–538 (2006)CrossRefGoogle Scholar
  14. 14.
    Mace, F., Standaert, F.X., Quisquater, J.J.: FPGA implementation(s) of a scalable encryption algorithm. IEEE Trans. Very Large Scale Integration (VLSI) Systems 16(2), 212–216 (2008)CrossRefGoogle Scholar
  15. 15.
    McLoone, M., McCanny, J.: Generic architecture and semiconductor intellectual property cores for advanced encryption standard cryptography. IEE Proc. Comput. Digital Tech. 150(4), 239–244 (2003)CrossRefGoogle Scholar
  16. 16.
    NIST: Cryptographic Module Validation Program Management Manual, May 2014. http://csrc.nist.gov/groups/STM/cmvp/documents/CMVPMM.pdf
  17. 17.
    Portilla, J., Otero, A., de la Torre, E., Riesgo, T., Stecklina, O., Peter, S., Langendrfer, P.: Adaptable security in wireless sensor networks by using reconfigurable ECC hardware coprocessors. In: IJDSN 2010 (2010). http://dblp.uni-trier.de/db/journals/ijdsn/ijdsn2010.html#PortillaOTRSPL10
  18. 18.
    Schaumont, P., Aysu, A.: Three design dimensions of secure embedded systems. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 1–20. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-41224-0_1 CrossRefGoogle Scholar
  19. 19.
    Sharma, K., Ghose, M.: Cross layer security framework for wireless sensor networks. Int. J. Secur. Appl. 5(1), 35–52 (2011)Google Scholar
  20. 20.
    Standaert, F.X., Piret, G., Rouvroy, G., Quisquater, J.J.: FPGA implementations of the ICEBERG block cipher. In: International Conference on Information Technology: Coding and Computing, ITCC 2005, vol. 1, pp. 556–561 (2005)Google Scholar
  21. 21.
    Wang, Y., Attebury, G., Ramamurthy, B.: A survey of security issues in wireless sensor networks. IEEE Commun. Surv. Tutorials 8(2), 2–23 (2006)CrossRefGoogle Scholar
  22. 22.
    Yalla, P., Kaps, J.: Lightweight cryptography for FPGAs. In: International Conference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230 (2009)Google Scholar
  23. 23.
    Younis, M., Krajewski, N., Farrag, O.: Adaptive security provision for increased energy efficiency in wireless sensor networks. In: IEEE 34th Conference on Local Computer Networks, LCN 2009, pp. 999–1005, October 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Secure Embedded Systems, Center for Embedded Systems for Critical Applications, Bradley Department of ECEVirginia TechBlacksburgUSA

Personalised recommendations