Retrieving Medical Literature for Clinical Decision Support

  • Luca Soldaini
  • Arman Cohan
  • Andrew Yates
  • Nazli Goharian
  • Ophir Frieder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9022)


Keeping current given the vast volume of medical literature published yearly poses a serious challenge for medical professionals. Thus, interest in systems that aid physicians in making clinical decisions is intensifying. A task of Clinical Decision Support (CDS) systems is retrieving highly relevant medical literature that could help healthcare professionals in formulating diagnoses or determining treatments. This search task is atypical as the queries are medical case reports, which differs in terms of size and structure from queries in other, more common search tasks. We apply query reformulation techniques to address literature search based on case reports. The proposed system achieves a statistically significant improvement over the baseline (29% – 32%) and the state-of-the-art (12% – 59%).


medical literature search medical query reformulation query expansion query reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdou, S., Savoy, J.: Searching in medline: Query expansion and manual indexing evaluation. Information Processing & Management (2008)Google Scholar
  2. 2.
    Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval based on measuring the divergence from randomness. In: ACM Transactions on Information Systems (TOIS) (2002)Google Scholar
  3. 3.
    Balasubramanian, N., Kumaran, G., Carvalho, V.R.: Exploring reductions for long web queries. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2010)Google Scholar
  4. 4.
    Burke, D.T., DeVito, M.C., Schneider, J.C., Julien, S., Judelson, A.L.: Reading habits of physical medicine and rehabilitation resident physicians. American Journal of Physical Medicine & Rehabilitation (2004)Google Scholar
  5. 5.
    Cohan, A., Soldaini, L., Yates, A., Goharian, N., Frieder, O.: On clinical decision support. In: Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 651–652. ACM (2014)Google Scholar
  6. 6.
    Demner-Fushman, D., Lin, J.: Answering clinical questions with knowledge-based and statistical techniques. Computational Linguistics (2007)Google Scholar
  7. 7.
    Hersh, W., Buckley, C., Leone, T., Hickam, D.: Ohsumed: An interactive retrieval evaluation and new large test collection for research. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 251–263. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Hersh, W., Price, S., Donohoe, L.: Assessing thesaurus-based query expansion using the umls metathesaurus. In: Proceedings of the AMIA Symposium. American Medical Informatics Association (2000)Google Scholar
  9. 9.
    Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2006)Google Scholar
  10. 10.
    Kelly, L., et al.: Overview of the shARe/CLEF eHealth evaluation lab 2014. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 172–191. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Kumaran, G., Carvalho, V.R.: Reducing long queries using query quality predictors. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2009)Google Scholar
  12. 12.
    Luo, G., Tang, C., Yang, H., Wei, X.: Medsearch: A specialized search engine for medical information retrieval. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management. ACM (2008)Google Scholar
  13. 13.
    Sneiderman, C.A., Demner-Fushman, D., Fiszman, M., Ide, N.C., Rindflesch, T.C.: Knowledge-based methods to help clinicians find answers in medline. Journal of the American Medical Informatics Association (2007)Google Scholar
  14. 14.
    Soldaini, L., Cohan, A., Yates, A., Goharian, N., Frieder, O.: Query reformulation for clinical decision support search. In: The Twenty-Third Text REtrieval Conference Proceedings (TREC 2014) (2015)Google Scholar
  15. 15.
    Suominen, H., et al.: Overview of the shARe/CLEF eHealth evaluation lab 2013. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 212–231. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Tenopir, C., King, D.W., Clarke, M.T., Na, K., Zhou, X.: Reading patterns and preferences of pediatricians. Journal of the Medical Library Association (2007)Google Scholar
  17. 17.
    Yu, H., Kim, T., Oh, J., Ko, I., Kim, S.: Refmed: relevance feedback retrieval system fo pubmed. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. ACM (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luca Soldaini
    • 1
  • Arman Cohan
    • 1
  • Andrew Yates
    • 1
  • Nazli Goharian
    • 1
  • Ophir Frieder
    • 1
  1. 1.Information Retrieval LabGeorgetown UniversityUSA

Personalised recommendations