Content-Based Similarity of Twitter Users

  • Stefano Mizzaro
  • Marco Pavan
  • Ivan Scagnetto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9022)

Abstract

We propose a method for computing user similarity based on a network representing the semantic relationships between the words occurring in the same tweet and the related topics. We use such specially crafted network to define several user profiles to be compared with cosine similarity. We also describe an initial experimental activity to study the effectiveness on a limited dataset.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Hafez, A., Xu, Y.: A survey of user modelling in social media websites. Computer and Information Science 6(4), 59 (2013)CrossRefGoogle Scholar
  2. 2.
    Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Effects of user similarity in social media. In: WSDM, pp. 703–712. ACM (2012)Google Scholar
  3. 3.
    Campbell, W.M., Dagli, C.K., Weinstein, C.J.: Social Network Analysis with Content and Graphs. Lincoln Laboratory Journal 20(1) (2013)Google Scholar
  4. 4.
    Kwok, K.L.: A neural network for probabilistic information retrieval. In: SIGIR 1989, pp. 21–30 (1989)Google Scholar
  5. 5.
    Lane, N.D., et al.: Exploiting social networks for large-scale human behavior modeling. IEEE Pervasive Computing 10(4), 45–53 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, X., Wang, M., Liang, T.-P.: A multi-theoretical kernel-based approach to social network-based recommendation. Decision Support Systems (2014)Google Scholar
  7. 7.
    Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.: A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Systems 56, 156–166 (2014)CrossRefGoogle Scholar
  8. 8.
    Medo, M.: Network-based information filtering algorithms: Ranking and recommendation. In: Dynamics on and of Complex Networks, vol. 2, pp. 315–334. Springer, New York (2013)Google Scholar
  9. 9.
    Mizzaro, S., Pavan, M., Scagnetto, I., Valenti, M.: Short text categorization exploiting contextual enrichment and external knowledge. In: Proc. of SoMeRA 2014, SIGIR 2014 (2014)Google Scholar
  10. 10.
    Orlandi, F., Breslin, J., Passant, A.: Aggregated, interoperable and multi-domain user profiles for the social web. In: 8th Int. Conf. on Semantic Systems, pp. 41–48. ACM (2012)Google Scholar
  11. 11.
    Tao, K., Abel, F., Gao, Q., Houben, G.-J.: TUMS: Twitter-based user modeling service. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 269–283. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Wilkinson, R., Hingston, P.: Using the cosine measure in a neural network for document retrieval. In: ACM SIGIR Conf. on Research and Development in IR, pp. 202–210. ACM (1991)Google Scholar
  13. 13.
    Yan, Q., Wu, L., Zheng, L.: Social network based microblog user behavior analysis. Physica A: Statistical Mechanics and its Applications 392(7), 1712–1723 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Wu, Y., Yang, Q.: Community discovery in twitter based on user interests. Journal of Computational Information Systems 8(3), 991–1000 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefano Mizzaro
    • 1
  • Marco Pavan
    • 1
  • Ivan Scagnetto
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceUniversity of UdineUdineItaly

Personalised recommendations