Reticulate Evolution pp 121-178

Part of the Interdisciplinary Evolution Research book series (IDER, volume 3) | Cite as

Historical and Epistemological Perspectives on What Horizontal Gene Transfer Mechanisms Contribute to Our Understanding of Evolution

Chapter

Abstract

Since the 1990s, results coming in from molecular phylogenetics necessitate us to recognize that Horizontal Gene Transfer (HGT) occurs massively across all three domains of life. Nonetheless, many of the mechanisms whereby genes can become transferred laterally have been known from the early twentieth century onward. The temporal discrepancy between the first historical observations of the processes, and the rather recent general acceptance of the documented data, poses an interesting epistemological conundrum: Why have incoming results on HGT been widely neglected by the general evolutionary community and what causes for a more favorable reception today? Five reasons are given: (1) HGT was first observed in the biomedical sciences and these sciences did not endorse an evolutionary epistemic stance because of the ontogeny/phylogeny divide adhered to by the founders of the Modern Synthesis. (2) Those who did entertain an evolutionary outlook associated research on HGT with a symbiotic epistemic framework. (3) That HGT occurs across all three domains of life was demonstrated by modern techniques developed in molecular biology, a field that itself awaits full integration into the general evolutionary synthesis. (4) Molecular phylogenetic studies of prokaryote evolution were originally associated with exobiology and abiogenesis, and both fields developed outside the framework provided by the Modern Synthesis. (5) Because HGT brings forth a pattern of reticulation, it contrasts the standard idea that evolution occurs solely by natural selection that brings forth a vertical, bifurcating pattern in the “tree” of life. Divided into two parts, this chapter first reviews current neo-Darwinian “tree of life” versus reticulate “web of life” polemics as they have been debated in high-profile academic journals, and secondly, the historical context of discovery of the various means whereby genes are transferred laterally is sketched. Along the way, the reader is introduced to how HGT contradicts some of the basic tenets of the neo-Darwinian paradigm.

Keywords

Tree of life Web of life Horizontal Gene Transfer Transformation Transduction Conjugation Gene transfer agents Modern Synthesis Extended Synthesis Biomedical sciences 

References

  1. Adams JW, Kaufman RE, Kretschmer PJ, Harrison M, Nienhuis AW (1980) A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucleic Acids Res 8(24):6113. doi:10.1093/nar/8.24.6113 PubMedCentralPubMedGoogle Scholar
  2. Akamatsu T, Taguchi H (2001) Incorporation of the whole chromosomal DNA in protoplast lysates into competent cells of Bacillus subtilis. Biosci Biotechnol Biochem 65(4):823–829. doi:10.1271/bbb.65.823 PubMedGoogle Scholar
  3. Akiba T, Koyama K, Ishiki Y, Kimura S, Fukushima T (1960) On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol 4(2):219–227. doi:10.1111/j.1348-0421.1960.tb00170.x PubMedGoogle Scholar
  4. Ambler P, Meyer T, Kamen MD (1979) Anomalies in amino acid sequences of small cytochromes c and cytochromes c′ from two species of purple photosynthetic bacteria. Nature 278:661–662PubMedGoogle Scholar
  5. Andam CP, Williams D, Gogarten JP (2010) Natural taxonomy in light of horizontal gene transfer. Biol Phil 25(4):589–602Google Scholar
  6. Anderson ES (1968) The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol 22:131–180PubMedGoogle Scholar
  7. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. doi:10.1038/nrmicro2319 PubMedGoogle Scholar
  8. Arnold ML (2008) Reticulate evolution and humans: origins and ecology. Oxford University Press, New YorkGoogle Scholar
  9. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumonococcal types. Induction of transformation by a deoxyribo-nucleic acid fraction isolated from pnuemococcus type III. J Exp Med 79:137–157PubMedCentralPubMedGoogle Scholar
  10. Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Rev 36(4):525–557Google Scholar
  11. Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? Evol Biol 5:33Google Scholar
  12. Bapteste E et al (2009) Prokaryotic evolution and the tree of life are two different things. Biology Direct 4:34PubMedCentralPubMedGoogle Scholar
  13. Bardaji L, Añorga M, Jackson RW, Martínez-Bilbao A, Yanguas N, Murillo J (2011) Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae. PLoS ONE 6(10):e25773PubMedCentralPubMedGoogle Scholar
  14. Barker A, Clark CA, Manning PA (1994) Identification of VCR, a repeated sequence associated with a locus encoding a hemag glutinin in Vibrio cholerae O1. J Bacteriol 176:5450–5458PubMedCentralPubMedGoogle Scholar
  15. Behring E, Kitasato S (1890) Ueber das Zustandekommen der Diphtherie-Immunitat und der Tetanus-Immunitat bei Thieren. Deutsche medizinsche Wochenschrift 16:1113–1114Google Scholar
  16. Beijerinck MW (1898) Über ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verhandelingen der Koninklijke academie van Wetenschappen te Amsterdam 65:1–22Google Scholar
  17. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M (2004) Long-term reinfection of the human genome by endogenous retroviruses. PNAS 101(14):4894–4899. doi:10.1073/pnas.0307800101 PubMedCentralPubMedGoogle Scholar
  18. Berg DE, Howe MM (eds) (1989) Mobile DNA. American Society for Microbiology, Washington DCGoogle Scholar
  19. Boeke JD (2003) The unusual phylogenetic distribution of retrotransposons: A hypothesis. Genome Res 13:1975–1983Google Scholar
  20. Buchner P (1921) Tier und Pflanze in intrazellularer Symbiose. BerlinGoogle Scholar
  21. Bukhari AI, Shapiro JA, Adhya SL (1977) DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory: Cold Spring, Harbor NYGoogle Scholar
  22. Burnet FM (1934) The bacteriophages. Biol Revs Cambridge Phil Soc 9:332–350Google Scholar
  23. Busslinger M, Rusconi S, Birnstiel ML (1982) An unusual evolutionary behavior of a sea urchin histone gene cluster. EMBO J 1(1):27PubMedCentralPubMedGoogle Scholar
  24. Case CL, Chung K (1997) Montagu and Jenner: the campaign against smallpox. SIM News 47(2):58–60Google Scholar
  25. Cavalli Sforza LL (1950) La sessualita new batteri. Boll Ist Sierotera Milano 29:281–289Google Scholar
  26. Champion AB et al (1980) Evolution in Pseudomonas fluorescens. J Gen Microbiol 120(2):485–511PubMedGoogle Scholar
  27. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241–249. doi:10.1038/nrmicro844 PubMedGoogle Scholar
  28. Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24. doi:10.1371/journal.pcbi.0010024 PubMedCentralGoogle Scholar
  29. Chiura HX, Kogure K, Hagemann S, Ellinger A, Velimirov B (2011) Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria. FEMS Microbiol Ecol 76:576–591PubMedGoogle Scholar
  30. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedGoogle Scholar
  31. Cohen SN (1976) Transposable genetic elements and plasmid evolution. Nature 263:731–738. doi:10.1038/263731a0 PubMedGoogle Scholar
  32. Cohen SN, Miller CA (1969) Multiple molecular species of circular R-factor DNA isolated from Escherichia coli. Nature 224:1273–1277PubMedGoogle Scholar
  33. Cohen SN, Miller CA (1970) Molecular nature of R-factors isolated from Proteus mirabilis and Escherichia coli. J Mol Biol 50(3):671–687PubMedGoogle Scholar
  34. Cohen S, Chang A, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. PNAS 69(8):2110–2114. doi:10.1073/pnas.69.8.2110 PubMedCentralPubMedGoogle Scholar
  35. Cohn FJ (1875) Untersuchungen über Bakterien. Beitraege zur Biologie der Planzen 1:127–222Google Scholar
  36. Campbell A et al (1977) Nomenclature of transposable elements in prokaryotes, DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratories, New York pp 15–22; also, 1979, Gene, 5, pp 197–206Google Scholar
  37. Cornelissen JH, Cornwell WK (2014) The tree of life in ecosystems: evolution of plant effects on carbon and nutrient cycling. J Ecol 269–274 doi:10.1111/1365-2745.12217
  38. Cotton J (2001) Retroviruses from retrotransposons. Genome Biol 2(2):6Google Scholar
  39. Coughter JP, Stewart GJ (1989) Genetic exchange in the environment. Antonie Van Leeuwenhoek 55(1):15–22PubMedGoogle Scholar
  40. Cowles HC (1915) Hereditary symbiosis. Bot Gaz 59(1):61–63Google Scholar
  41. Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) (2002) Mobile DNA II. ASM Press, WashingtonGoogle Scholar
  42. Crick F (1968) The origin of the genetic code. J Mol Biol 38:367–379PubMedGoogle Scholar
  43. Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118. doi:10.1186/gb-2006-7-10-118 PubMedCentralPubMedGoogle Scholar
  44. Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Phil Trans R Soc B 364:2187–2196Google Scholar
  45. Daniels SP et al (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–335Google Scholar
  46. Darwin C (1837–1838) Notebook B: [Transmutation of species (1837–1838)]. CUL-DAR121—transcribed by Kees Rookmaaker. Darwin Online. http://darwin-online.org.uk
  47. Darwin C (1859) On the origin of species. Murray, LondonGoogle Scholar
  48. Dawkins R (1976) The selfish gene. Oxford Univ Press, LondonGoogle Scholar
  49. De Bary HA (1861) Die gegenwärtig herrschende Kartoffelkrankheit, ihre Ursache und ihre Verhütung: Eine pflanzenphysiologische Untersuchung in allgemein verständlicher Form dargestellt. Leipzig: A. Förstersche BuchhandlungGoogle Scholar
  50. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384. doi:10.1371/journal.pgen.1002384 PubMedCentralPubMedGoogle Scholar
  51. de Magalhães J, Finch C, Janssens G (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev 9(3):315–323. doi:10.1016/j.arr.2009.10.006 PubMedCentralPubMedGoogle Scholar
  52. Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12(10):1455–1465. doi:10.1101/gr.282402 PubMedGoogle Scholar
  53. Dennett D, Coyne J, Dawkins R, Myers P (2009) Darwin was right. New Sci 201(2696):25Google Scholar
  54. D'Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375. doi:10.1098/rstb.2009.0040 Google Scholar
  55. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128. doi:10.1126/science.284.5423.2124 PubMedGoogle Scholar
  56. Doolittle FW (2005) If the tree of life fell, would we recognize the sound? In: Sapp J (ed) Microbial phylogeny and evolution: concepts and controversies. Oxford University Press, New York, pp 119–133Google Scholar
  57. Doolittle WF (2009) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Proc Natl Acad Sci USA. doi:10.1098/rstb.2009.0032 PubMedCentralPubMedGoogle Scholar
  58. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049. doi:10.1073/pnas.0610699104 PubMedCentralPubMedGoogle Scholar
  59. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284(5757):601–603. doi:10.1038/284601a0 PubMedGoogle Scholar
  60. Doolittle WF et al (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388PubMedGoogle Scholar
  61. Downie AW (1972) Pneumococcal transformation—a backward view: fourth Griffith memorial lecture. J Gen Microbiol 73(1):1–11. doi:10.1099/00221287-73-1-1 PubMedGoogle Scholar
  62. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600PubMedGoogle Scholar
  63. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53(1):217–244. doi:10.1146/annurev.micro.53.1.217 PubMedGoogle Scholar
  64. Ehrlich P (1877) Beiträge zur Kenntniss der Anilinfärbungen und ihren Verwendung in der mikroskopischen Technik.In: Schultze M (ed) Archiv für Mikroskopische Anatomie Bd 13. Valetta St. George, Bonn & W. Waldeyer, Strassburg, pp 263–277Google Scholar
  65. Ehrlich P (1879a) Beiträge zur Kenntniss der granulirten Bindegewebszellen und der eosinophilen Leukocythen. Archiv fuer Anatomie und Physiologie, Physiologische Abteilung, pp 166–169Google Scholar
  66. Ehrlich P (1879b) Ueber die specifischen Granulationen des Blutes. Archiv fuer Anatomie und Physiologie, Physiologische Abteilung, pp 571–579Google Scholar
  67. Ehrlich P (1892a) Bemerkungen über die Immunität durch Vererbung und Säugung. Dtsch Med Wochenschr 18:511Google Scholar
  68. Ehrlich P (1892b) Ueber Immunität durch Vererbung und Säugung. Zeitschrift für Hygiene und Infektionskrankheiten, medizinische Mikrobiologie, Immunologie und Virologie 12:183–203Google Scholar
  69. Ehrlich P (1898) Ueber den Zusammenhang von chemischer Constitution und Wirkung. Münchener medizinische Wochenschrift 1654–1655Google Scholar
  70. Ehrlich P (1900) Cellularbiologische Betrachtungen über Immunität. Bericht der Senckenbergischen Naturforschenden Gesellschaft in Frankfurt am Main 147–150Google Scholar
  71. Ehrlich P, Morgenroth J (1902) Die Seitenkettentheorie der Immunität. Anleitung zu hygienischen Untersuchungen: nach den im Hygienischen Institut der königl. Ludwig-Maximilians-Universität zu München üblichen Methoden zusammengestellt 3. Aufl 381–394Google Scholar
  72. Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5(3):e82. doi:10.1371/journal.pbio.0050082 PubMedCentralPubMedGoogle Scholar
  73. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In Schopf TJM (ed) Models in paleobiology. Freeman. Cooper and Co, New York, pp 82–115Google Scholar
  74. Engelmoer DJ, Rozen DE (2011) Competence increases survival during stress in Streptococcus pneumoniae. Evolution 65(12):3475–3485. doi:10.1111/j.1558-5646.2011.01402.x PubMedGoogle Scholar
  75. Finkel SE, Kolter R (2001) DNA as a nutrient: novel role for bacterial competence gene homologs. J Bacteriol 183(21):6288–6293. doi:10.1128/JB.183.21.6288-6293.2001 PubMedCentralPubMedGoogle Scholar
  76. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107PubMedGoogle Scholar
  77. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811PubMedGoogle Scholar
  78. Flavell AJ (1981) Did retroviruses evolve from transposable elements? Nature 289:10–11PubMedGoogle Scholar
  79. Fournier GP, Dick AA, Williams D, Gogarten JP (2011) Evolution of the Archaea: emerging views on origins and phylogeny. Res Microbiol 162(1):92–98PubMedGoogle Scholar
  80. Fox GCA et al (1980) The phylogeny of prokaryotes. Science 209(4455):457–463. doi:10.1126/science.6771870 PubMedGoogle Scholar
  81. Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacter 61(6):675–688Google Scholar
  82. Galun E 2003 Transposable elements: a guide to the perplexed and the novice. With appendices on RNAi, chromatin remodeling and gene tagging. Kluwer Academic Publishers, Dordrecht NLGoogle Scholar
  83. Ge F, Wang LS, Kim J (2005) The cobweb of life revealed by genome scale estimates of horizontal gene transfer. PLoS Biol 3:e316. doi:10.1371/journal.pbio.0030316 PubMedCentralPubMedGoogle Scholar
  84. Gil R, Amparo L (2012) Factors behind JUNK DNA in Bacteria. Genes 3:634–650. doi:10.3390/genes3040634
  85. Gogarten JP, Kibak H, Dittrich P et al (1989) Evolution of the vacuolar H + -ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86(17):6661–6665PubMedCentralPubMedGoogle Scholar
  86. Goldenfeld N, Woese C (2007) Biology’s next revolution. Nature 445:369PubMedGoogle Scholar
  87. Golding G, Gupta RS (1995) Protein based phylogenies support a chimeric origin of the eukaryotic genome. Mol Biol Evol 12:1–6PubMedGoogle Scholar
  88. Goldschmitdt R (1940) The material basis of evolution. Yale University Press, New HavenGoogle Scholar
  89. Gontier N (2007) Universal symbiogenesis: a genuine alternative to universal selectionist accounts. Symbiosis 44:167–181Google Scholar
  90. Gontier N (2011) Depicting the tree of life: the philosophical and historical roots of evolutionary tree diagrams. Evol Educ Outreach 4(3):515–538Google Scholar
  91. Gray M et al (1989) On the evolutionary origin of the plant mitochondrion and its genome. PNAS 86:2267–2271PubMedCentralPubMedGoogle Scholar
  92. Gregory RT 2007 A word about ‘Junk DNA’. Evolver Zone Genomicron http://www.genomicron.evolverzone.com/2007/04/word-about-junk-dna/
  93. Gribaldo S, Forterre P, Brochier-Armanet C (2011) Editorial: Archaea and the tree of life. Res Microbiol 162:11–14Google Scholar
  94. Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159PubMedCentralPubMedGoogle Scholar
  95. Griffiths AJF, Miller JH, Suzuki DT, et al (2000) Bacterial conjugation and bacterial transduction. In: An introduction to genetic analysis, 7th edn. WH Freeman, New York. http://www.ncbi.nlm.nih.gov/books/
  96. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Reviews 67(2):277–301. doi:10.1128/MMBR.67.2.277-301.2003 Google Scholar
  97. Gupta RS, Singh B (1994) Phylogenetic analysis of 70kD heat-shock protein sequences suggest a chimeric origin for the eukaryotic nucleus. Curr Biol 4:1104–1114PubMedGoogle Scholar
  98. Guttman B, Griffiths A, Suzuki D, Cullis T (2002) Genetics. Oneworld, OxfordGoogle Scholar
  99. Haeckel E (1866) Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. Fisher, JenaGoogle Scholar
  100. Hall RM, Stokes HW (2004) Integrons or super integrons? Microbiology 150(Pt 1):3–4. doi:10.1099/mic.0.26854-0 PubMedGoogle Scholar
  101. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249. doi:10.1016/S1074-5521(98)90108-9 PubMedGoogle Scholar
  102. Hartley RW (1980) Homology between prokaryotic and eukaryotic ribonucleases. J Mol Evol 15(4):355–358PubMedGoogle Scholar
  103. Hayes W (1952) Recombination in Bact. coli K 12: unidirectional transfer of genetic material. Nature 169:118–119PubMedGoogle Scholar
  104. Hayes W (1953) Observations on a transmissible agent determining sexual differentiation in Bacterium coli. J Gen Microbiol 8:72–88PubMedGoogle Scholar
  105. Hebert P et al (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321. doi:10.1098/rspb.2002.2218 PubMedCentralPubMedGoogle Scholar
  106. Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209. doi:10.1038/340205a0 PubMedGoogle Scholar
  107. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56PubMedCentralPubMedGoogle Scholar
  108. Hilario E, Gogarten JP (1993) Horizontal transfer of ATPase genes—the tree of life becomes a net of life. Biosystems 31:111–119. doi:10.1016/0303-2647(93)90038-E PubMedGoogle Scholar
  109. Hoelzer MA, Michod RE (1991) DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA. Genetics 128(2):215–223PubMedCentralPubMedGoogle Scholar
  110. Holloway B, Broda P (1996) William Hayes 1918–1994. Hist Rec Aust Sci 11(2):213–228Google Scholar
  111. Hong D-Y, Chen Z-D, Qiu Y-L, Donoghue MJ (2008) Patterns of evolution and the tree of life (a symposium volume). J Syst Evol 46(3)Google Scholar
  112. Hugenholz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774Google Scholar
  113. Huxley J (1942) Evolution: the Modern Synthesis. Allen & Unwin, LondonGoogle Scholar
  114. Iwanowski D (1892) Über die Mosaikkrankheit der Tabakspflanze. Bulletin Scientifique publié par l'Académie Impériale des Sciences de Saint-Pétersbourg/Nouvelle Serie III (St. Petersburg) 35:67–70Google Scholar
  115. Iwasaki W, Takagi T (2009) Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PLoS Genet 5(3):e1000402PubMedCentralPubMedGoogle Scholar
  116. Jacob F (1955) Transduction of lysogeny in Eschercia coli. Virology 1:207–220PubMedGoogle Scholar
  117. Jacob F, Wollman EL (1958) Les épisomes, elements génétiques ajoutés. Comptes Rendus des Académie des Sciences, Paris 247:154–156Google Scholar
  118. Jacob F, Schaeffer P, Wollman EL (1960) Microbial genetics. Symposium Soc Gen Microbial 10(67):352Google Scholar
  119. Jenner E (1798) An inquiry into the causes and effects of the Vaccinæ, Or Cow-Pox. The Harvard ClassicsGoogle Scholar
  120. Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158(10):767–778. doi:10.1016/j.resmic.2007.09.004 PubMedGoogle Scholar
  121. Jones D, Sneath HA (1970) Genetic transfer and bacterial taxonomy. Bacteriological Rev 34:40431Google Scholar
  122. Karnovsky ML (1981) Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med 304(19):1178–1180. doi:10.1056/NEJM198105073041923 PubMedGoogle Scholar
  123. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Gen 9:605–618. doi:10.1038/nrg2386 Google Scholar
  124. Kellis M et al (2014) Defining functional DNA elements in the human genome. PNAS 111(17):6131–6138. doi:10.1073/pnas.1318948111 PubMedCentralPubMedGoogle Scholar
  125. Khodosevich K, Lebedev L, Sverdolv E (2002) Endogenous retroviruses and human evolution. Comp Funct Genomics 3:494–498. doi:10.1002/cfg.216 PubMedCentralPubMedGoogle Scholar
  126. Kidwell MG, Novy JB (1979) Hybrid dysgenesis in Drosophila melanogaster: sterility resulting from gonodal dysgenesis in the P-M system. Genetics 92:1127–1140PubMedCentralPubMedGoogle Scholar
  127. Koch R (1876) Untersuchungen ueber Bakterien V. Die Aetiologie der Milzbrand-Krankheit, begruendent auf die Entwicklungsgeschichte des Bacillus Anthracis. Beitr z Biol D Pflanzen 2:277–310Google Scholar
  128. Koch R (1882) Die Aetiologie der Tuberculose. Berliner Klinische Wochenschrift 19:221–230Google Scholar
  129. Kovalevskaia NP (2002) Mobile gene cassettes and DNA integration elements. Mol Biol 36(2):261–267Google Scholar
  130. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959. doi:10.1101/gr.3666505 PubMedCentralPubMedGoogle Scholar
  131. Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: the Gene Transfer Agent of Rhodobacter capsulatus. PNAS 97(2):859–864. doi:10.1073/pnas.97.2.859 PubMedCentralPubMedGoogle Scholar
  132. Lang AS, Zhaxybayeva O, Beatty TJ (2012) Gene transfer agents: phage-like elements of genetic exchange. Nature Rev Mircobiol 10:472–482Google Scholar
  133. Laveran A (1880) A new parasite found in the blood of malarial patients: parasitic origin of malarial attacks. Bull mem soc med hosp Paris 17:158–164Google Scholar
  134. Lawton G (2009) Axing Darwin’s tree: the tree of life is an iconic image, but it could be time to fell it. New Scientist 201(2692):34–39Google Scholar
  135. Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32(4):403–430PubMedGoogle Scholar
  136. Lederberg J (1955) Recombination mechanisms in bacteria. J Cell Comp Physiol 45(Suppl 2):75Google Scholar
  137. Lederberg J (1956) Genetic transduction. Am Sci 14(3):264–280Google Scholar
  138. Lederberg EM (1981) Plasmid reference center registry of transposon (Tn) allocations through. Gene 16:59–61PubMedGoogle Scholar
  139. Lederberg J (2003) Infectious history. Science 288(5464):27Google Scholar
  140. Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherchia coli. Genetics 38:51–64PubMedCentralPubMedGoogle Scholar
  141. Lederberg J, Tatum EL (1946) Gene recombination in E coli. Nature 158(4016):558. doi:10.1038/158558a0 PubMedGoogle Scholar
  142. Lederberg J, Lederberg EM, Zinder ND, Lively ER (1951) Recombination analysis of bacterial heredity. Cold Spring Harbor Symp Quant Biol 16:413–441PubMedGoogle Scholar
  143. Lederberg J, Cavalli LL, Lederberg EM (1952) Sex compatibility in Escherichia coli. Genetics 37(6):720–730PubMedCentralPubMedGoogle Scholar
  144. Lennox ES (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206PubMedGoogle Scholar
  145. Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. Freeman, New YorkGoogle Scholar
  146. Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. Curr Biol 332:171Google Scholar
  147. Lwoff A (1953) Lysogeny. Bact Rev 17:269–337PubMedCentralPubMedGoogle Scholar
  148. Lwoff A (1965) Nobel lecture: interaction among virus, cell, and organism. Nobelprizeorg Nobel Media AB http://www.nobelprize.org/nobel_prizes/medicine/laureates/1965/lwoff-lecture.html
  149. Lwoff A, Gutmann A (1950) Recherches sur un bacillus megatherium lysogène. Ann Inst Pasteur (Paris) 78(6):711–739Google Scholar
  150. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62(3):725–774PubMedCentralPubMedGoogle Scholar
  151. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53(1):159–162. doi:10.1016/0022-2836(70)90051-3 PubMedGoogle Scholar
  152. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  153. Margulis L (ed) (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. The MIT Press, BostonGoogle Scholar
  154. Margulis L (1998) The symbiotic planet: a new look at evolution. Weidenfeld & Nicolson, LondonGoogle Scholar
  155. Margulis L, Schwartz KV (1997) Five kingdoms: an illustrated guide to the phyla of life on earth. W.H. Freeman & CompanyGoogle Scholar
  156. Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973PubMedCentralPubMedGoogle Scholar
  157. Martin W (1999) Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21:99–104PubMedGoogle Scholar
  158. Martinez E, de la Cruz F (1988) Transposon Tn21 encodes a RecA-independent site-specific integration system. Mol Gen Genet 211:320–325PubMedGoogle Scholar
  159. Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846PubMedGoogle Scholar
  160. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314. doi:10.1146/annurev.micro.56.012302.160938 PubMedGoogle Scholar
  161. Mayer A (1886) Über die Mosaikkrankheit des Tabaks. Die Landwirtschaftliche Versuchs-stationen 32:451–467Google Scholar
  162. Mazel D (2006) Integrons: agents of bacterial evolution. Nature Rev Microbiol 4:608–620. doi:10.1038/nrmicro1462 Google Scholar
  163. Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608. doi:10.1126/science.280.5363.605 PubMedGoogle Scholar
  164. McClintock B (1941) The stability of broken ends of chromosomes in Zea Mays. Genetics 26(2):234–282PubMedCentralPubMedGoogle Scholar
  165. McClintock B (1950) The origin and behavior of mutable loci in maize. PNAS 36(6):344–355PubMedCentralPubMedGoogle Scholar
  166. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38(6):579–599PubMedCentralPubMedGoogle Scholar
  167. Merezhkowsky C (1905) Über natur und ursprung der chromatophoren im pflanzenreiche. Biol Centralbl 25(593–604):689–691Google Scholar
  168. Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen, Biologisches Centralblatt 30: 278–288, 289–303, 321–347, 353–367Google Scholar
  169. Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9(2):309–321. doi:10.1093/nar/9.2.309 PubMedCentralPubMedGoogle Scholar
  170. Mindell DP, Villarreal LP (2003) Don’t forget about viruses. Science 5:1677Google Scholar
  171. Mitsuhashi S, Harada K, Hashimoto H, Egawa R (1961) On the drug-resistance of enteric bacteria. Jpn J Exp Med 31:47–52PubMedGoogle Scholar
  172. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in Aphids. Science 328:624–627PubMedGoogle Scholar
  173. Morange M (2000) A history of molecular biology. Harvard University Press, Cambridge (New Edited edition)Google Scholar
  174. Morgan GJ (1998) Emile Zuckerkandl, Linus Pauling, and the molecular evolutionary clock, 1959–1965. J Hist Biol 31(2):155–178. doi:10.1023/A:1004394418084 PubMedGoogle Scholar
  175. Morse ML, Lederberg EM, Lederberg J (1956) Transduction in Eschercia coli K-12. Genetics 41:142–156PubMedCentralPubMedGoogle Scholar
  176. Nelson PN, Hooley P, Molecular Immunology Research Group (2004) Human endogenous retroviruses: transposable elements with potential? Clin Exp Immunol 138(1):1–9 doi:10.1111/j.1365-2249.2004.02592.x
  177. Neufeld F (1902) Über die agglutination der pneumokokken und über die theorieen der agglutination. Z Hyg Infektionskr 40:54–72Google Scholar
  178. Neufeld F, Händel L (1910) Weitere Untersuchungen über Pneumokokken Heilsera. III Mitteilung. Über Vorkommen und Bedeutung atypischer Varietäten des Pneumokokkus. Arbeit a.d. Kaiserlichen Gesundheitsamte 34:293–304Google Scholar
  179. O’Malley M, Martin W, Dupré J (2010) The tree of life: introduction to an evolutionary debate. Biol Philos 25(4):441–453Google Scholar
  180. Ochia K, Yamanaka T, Kimura K, Sawada O (1959) Inheritance of drug resistance (and its transfer) between Shigella strains and between Shigella and E. coli strains. Nihon Iji Shimpo 1861:34Google Scholar
  181. Ohno S (1972) So much junk DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Gordon and Breach, New York, pp 366–370Google Scholar
  182. Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110(1–4):475–490. doi:10.1159/000084981 PubMedGoogle Scholar
  183. O'Malley MA, Koonin EV (2011) How stands the tree of life a century and a half after the origin? Biology Direct 6:32PubMedCentralPubMedGoogle Scholar
  184. Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview of some points of view. Am J Bot 91(10):1437–1445PubMedGoogle Scholar
  185. Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of inducibility in the synthesis of beta-galactosidase by E. coli. J Mol Biol 1:165–178Google Scholar
  186. Pasteur L (1880) De l’attenuation du virus cholera des poules. CR Acad Sci 91:673–680Google Scholar
  187. Pettersson E, Lundeberg J, Ahmadian A (2009) Generations of sequencing technologies. Genomics 93(2):105–111. doi:10.1016/j.ygeno.2008.10.003 PubMedGoogle Scholar
  188. Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria—structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635. doi:10.1007/s00018-008-8477-4 PubMedGoogle Scholar
  189. Ragan MA, McInerney JO, Lake J (2009) The network of life: genome beginnings and evolution. Phil Trans R Soc B 364(1527):2169–2175PubMedCentralPubMedGoogle Scholar
  190. Redfield R, Schrag M, Dead A (1997) The evolution of bacterial transformation: sex with poor relations. Genetics 146(1):27–38PubMedCentralPubMedGoogle Scholar
  191. Reinheimer H (1915) Symbiogenesis: the universal law of progressive evolution. Knapp, Drewett and Sons Ltd, WestminsterGoogle Scholar
  192. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431(2005):152–155. doi:10.1038/nature02848 PubMedGoogle Scholar
  193. Ryan F (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J Roy Soc Med 97:560–565PubMedCentralPubMedGoogle Scholar
  194. Ryan F (2009) Virolution. Harper Collins, LondonGoogle Scholar
  195. Sakai T, Iseki S (1954) Transduction of flagellar antigen in Salmonella E group. Gunma Jour Med Sco 3:195–199Google Scholar
  196. Salmon DE, Smith T (1886) On a new method of producing immunity from contagious diseases. Proc Biol Soc 3:29–33Google Scholar
  197. San Mauro D, Agorreta A (2010) Molecular systematics: a synthesis of the common methods and the state of knowledge. Cell Mol Biol Lett 15(2):311–341. doi:10.2478/s11658-010-0010-8 PubMedGoogle Scholar
  198. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448. doi:10.1016/0022-2836(75)90213-2 PubMedGoogle Scholar
  199. Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New YorkGoogle Scholar
  200. Sapp J (2003) Genesis: the evolution of biology. Oxford University Press, New YorkGoogle Scholar
  201. Sapp J (2009) The new foundations of evolution: on the tree of life. Oxford Univ. Press, New YorkGoogle Scholar
  202. Schuster S (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–8 doi:10.1038/nmeth1156 (PMID 18165802)
  203. Scott JR, Zähner D (2006) Pili with strong attachments: gram-positive bacteria do it differently. Mol Microbiol 62(2):320–330PubMedGoogle Scholar
  204. Serrelli E, Gontier N (eds) (2015) Macroevolution: explanation, interpretation and evidence. Springer, DordrechtGoogle Scholar
  205. Shapiro JA (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci USA 76(4):1933–1937. doi:10.1073/pnas.76.4.1933 PubMedCentralPubMedGoogle Scholar
  206. Shapiro JA (ed) (1983) Mobile genetic elements. Academic Press, WalthamGoogle Scholar
  207. Shine J, Czernilofsky AP, Friedrich R, Bishop JM, Goodman HM (1977) Nucleotide sequence at the 5′ terminus of the avian sarcoma virus genome. Proc Natl Acad Sci USA 74(4):1473–1477. doi:10.1073/pnas.74.4.1473 PubMedCentralPubMedGoogle Scholar
  208. Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28(3):433–434. doi:10.1016/0092-8674(82)90194-5 PubMedGoogle Scholar
  209. Sisco KL, Smith HO (1979) Sequence-specific DNA uptake in Haemophilus transformation. PNAS 76(2):972–976. doi:10.1073/pnas.76.2.972 PubMedCentralPubMedGoogle Scholar
  210. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218(4570):341–347. doi:10.1126/science.6289435 PubMedGoogle Scholar
  211. Staden R (1979) A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 6(7):2601–2610. doi:10.1093/nar/6.7.2601 PubMedCentralPubMedGoogle Scholar
  212. Stanto TB (2007) Prophage-like gene transfer agents-novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13(2):43–49Google Scholar
  213. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3:1669–1683PubMedGoogle Scholar
  214. Summers WC (2006) Phage and the early development of molecular biology. In: Bacteriophages The (ed) Calendar R. Oxford Univ Press, New YorkGoogle Scholar
  215. Syvänen M (1984a) Conserved regions in mammalian ß-globins: could they arise by cross-species gene exchange? J Theor Biol 107:685–696PubMedGoogle Scholar
  216. Syvänen M (1984b) The evolutionary implications of mobile genetic elements. Annu Rev Genet 18:271–293PubMedGoogle Scholar
  217. Syvänen M (1985) Cross-species gene transfer, implications for a new theory of evolution. J Theor Biol 112(2):333–343. doi:10.1016/S0022-5193(85)80291-5 PubMedGoogle Scholar
  218. Syvänen M (1986) Cross-species gene transfer: a major factor in evolution? Trends Genetic 4:1–4Google Scholar
  219. Syvanen M (1987) Molecular clocks and evolutionary relationships: possible distortions due to horizontal gene flow. J Mol Evol 26(1–2):16–23PubMedGoogle Scholar
  220. Syvanen M, Kado CI (eds) (1998) Horizontal gene transfer. Chapman & Hall, LondonGoogle Scholar
  221. Tan SY, Dee MK (2009) Elie Metchnikoff (1845–1916): discoverer of phagocytosis. Signapore Med L 50(5):456Google Scholar
  222. Tauber AI (2003) Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4:897–901PubMedGoogle Scholar
  223. Temin HM (1980) Origin of retroviruses from cellular movable genetic elements. Cell 21:599–600PubMedGoogle Scholar
  224. The ENCODE Project Consortium et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247 Google Scholar
  225. Thomas CM (2000) Horizontal gene pool: bacterial plasmids and gene spread. CRC Press, Boca RatonGoogle Scholar
  226. Trevors JT, Barkay T, Bourquin AW (1987) Gene transfer among bacteria in soil and aquatic environments: a review. Canad J Microbiol 33(3):191–198Google Scholar
  227. Twort F (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2:1241–1243Google Scholar
  228. Van Beneden PJ (1873) Un mot sur la vie sociale des animaux inférieurs. Bull Acad R Belgique série 2(36):779–796Google Scholar
  229. Van Beneden PJ (1875) Les comensaux et les parasites dans le règne animal. Biblio Sci. Int, ParisGoogle Scholar
  230. Villareal LP, Defilipps V (2000) A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol 74(15):7079–7084Google Scholar
  231. Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262(4):698–710PubMedGoogle Scholar
  232. Von Faber FC (1912) Das erbliche zusammenleben von bacterien und tropischen pflanzen. Jahrb Wiss Bot 51:285–375Google Scholar
  233. Wallin IE (1927) Symbionticism and the origin of species. Williams and Wilkins company, BaltimoreGoogle Scholar
  234. Watanabe T (1971) The problems of drug-resistant pathogenic bacteria: the origin of R factors. Ann NY Acad Sci 182:126–140PubMedGoogle Scholar
  235. Weickert MJ, Adhya S (1993) The galactose regulon of Escherichia coli. Mol Microbio 10(2):245–251Google Scholar
  236. Weiner AM (2002) SINEs ans LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350PubMedGoogle Scholar
  237. Weismann A (1885) Die Continuität des Keimplasma’s als Grundlage einer Theorie der Vererbung. Fischer, JenaGoogle Scholar
  238. Whittaker RH, Margulis L (1978) Protist classification and the kingdoms of organisms. Biosystems 10:3–18PubMedGoogle Scholar
  239. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. doi:10.1038/nrg2165 PubMedGoogle Scholar
  240. Williams D, Fournier GP, Lapierre P et al (2011) A rooted net of life. Biology Direct 6:45PubMedCentralPubMedGoogle Scholar
  241. Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & RowGoogle Scholar
  242. Woese CR (1998) The universal ancestor. PNAS 95(12):6854–6859PubMedCentralPubMedGoogle Scholar
  243. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74(11):5088–5090. doi:10.1073/pnas.74.11.5088 PubMedCentralPubMedGoogle Scholar
  244. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579. doi:10.1073/pnas.87.12.4576 PubMedCentralPubMedGoogle Scholar
  245. Wolf K, Delgiudice L (1987) Horizontal gene transfer between mitochondrial genomes. Endocytobiosis Cell Res 4(2):103–120Google Scholar
  246. Wollman EL, Jacob F (1955) Sur le mécanisme du transfer de matériel génétique au cours de la recombination chez E. coli K12. Compt Rend Acad Sci 240:2449–2451Google Scholar
  247. Yen HC, Hu NT, Marrs BL (1979) Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol 131:157–168PubMedGoogle Scholar
  248. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160–1165PubMedCentralPubMedGoogle Scholar
  249. Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr Biol 21(7):R242–R246PubMedGoogle Scholar
  250. Zinder ND (1955) Bacterial transduction. J Comp Physiol 45(Suppl 2):23–49Google Scholar
  251. Zinder ND (1992) Forty years ago: the discovery of bacterial transduction. Genetics 132(2):291–294PubMedCentralPubMedGoogle Scholar
  252. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bact 64:679–699PubMedCentralPubMedGoogle Scholar
  253. Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225Google Scholar
  254. Zuckerkandl E, Pauling L (1965a) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166Google Scholar
  255. Zuckerkandl E, Pauling L (1965b) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.AppEEL—Applied Evolutionary Epistemology LabUniversity of LisbonLisbonPortugal

Personalised recommendations