Synthetic Evidential Study as Primordial Soup of Conversation

  • Toyoaki Nishida
  • Atsushi Nakazawa
  • Yoshimasa Ohmoto
  • Christian Nitschke
  • Yasser Mohammad
  • Sutasinee Thovuttikul
  • Divesh Lala
  • Masakazu Abe
  • Takashi Ookaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8999)

Abstract

Synthetic evidential study (SES for short) is a novel technology-enhanced methodology for combining theatrical role play and group discussion to help people spin stories by bringing together partial thoughts and evidences. SES not only serves as a methodology for authoring stories and games but also exploits the framework of game framework to help people sustain in-depth learning. In this paper, we present the conceptual framework of SES, a computational platform that supports the SES workshops, and advanced technologies for increasing the utility of SES. The SES is currently under development. We discuss conceptual issues and technical details to delineate how much we can implement the idea with our technology and how much challenges are left for the future work.

Keywords

Inside understanding group discussion and learning intelligent virtual agents theatrical role play narrative technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishida, T., et al.: Synthetic Evidential Study as Augmented Collective Thought Process – – Preliminary Report. ACIIDS 2015, Bali, Indonesia (to be presented, 2015) Google Scholar
  2. 2.
    Nishida, T., Nakazawa, A., Ohmoto, Y., Mohammad, Y.: Conversational Informatics: A Data-Intensive Approach with Emphasis on Nonverbal Communication. Springer (2014) Google Scholar
  3. 3.
    Harrigan, P., Wardrip-Fruin, N.: Second Person: Role-Playing and Story in Games and Playable Media, MIT Press (2007) Google Scholar
  4. 4.
    Thovuttikul, S., Lala, D., van Kleef, N., Ohmoto, Y., Nishida, T.: Comparing People’s Preference on Culture-Dependent Queuing Behaviors in a Simulated Crowd, In: Proc. ICCI*CC 2012, pp. 153–162 (2012)Google Scholar
  5. 5.
    Lala, D., Mohammad, Y., Nishida, T.: A joint activity theory analysis of body interactions in multiplayer virtual basketball. Presented at 28th British Human Computer Interaction Conference, September 9-12, Southport, UK (2014) Google Scholar
  6. 6.
    Tatsumi, S., Mohammad, Y., Ohmoto, Y., Nishida, T.: Detection of Hidden Laughter for Human-agen Interaction. Procedia Computer Science (35), 1053–1062 (2014) Google Scholar
  7. 7.
    Lala, D., Nitschke, C., Nishida, T.: Enhancing Communication through Distributed Mixed Reality. AMT 2014, 501–512 (2014) Google Scholar
  8. 8.
    Mori, S., Ohmoto, Y., Nishida, T.: Constructing immersive virtual space for HAI with photos. In: Proceedings of the IEEE International Conference on Granular Computing, pp. 479–484 (2011)Google Scholar
  9. 9.
    Nitschke, C., Nakazawa, A., Nishida, T.: I See What You See: Point of Gaze Estimation from Corneal Images. In: Proc. 2nd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 298–304 (2013)Google Scholar
  10. 10.
    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Zhang, Z.: Parameter estimation techniques: A tutorial with application to conic fitting. Image Vis. Comput. 15(1), 59–76 (1997)CrossRefGoogle Scholar
  12. 12.
    Ohmoto, Y., Miyake, T., Nishida, T.: Dynamic estimation of emphasizing points for user satisfaction evaluations. In: Proc. the 34th Annual Conference of the Cognitive Science Society, pp. 2115–2120 (2012)Google Scholar
  13. 13.
    Ohmoto, Y., Kataoka, M., Nishida, T.: Extended methods to dynamically estimate emphasizing points for group decision-making and their evaluation. Procedia-Social and Behavioral Sciences 97, 147–155 (2013)CrossRefGoogle Scholar
  14. 14.
    Ohmoto, Y., Kataoka, M., Nishida, T.: The effect of convergent interaction using subjective opinions in the decision-making process. In: Proc. the 36th Annual Conference of the Cognitive Science Society, pp. 2711–2716 (2014)Google Scholar
  15. 15.
    Kaner, S.: Facilitator’s guide to participatory decision-making. Wiley (2007) Google Scholar
  16. 16.
    Mohammad, Y., Nishida, T., Okada, S.: Unsupervised simultaneous learning of gestures, actions and their associations for Human-Robot Interaction. In: IROS 2009, pp. 2537–2544 (2009)Google Scholar
  17. 17.
    Mohammad, Y., Nishida, T.: Learning interaction protocols using Augmented Bayesian Networks applied to guided navigation. In: IROS 2010, pp. 4119–4126 (2010)Google Scholar
  18. 18.
    Mohammad, Y., Nishida, T.: Robust Learning from Demonstrations using Multidimensional SAX. Presented at ICCAS 2014, October 22-25, Korea (2014)Google Scholar
  19. 19.
    Mohammad, Y., Nishida, T.: Tackling the Correspondence Problem - Closed-Form Solution for Gesture Imitation by a Humanoid’s Upper Body. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds.) AMT 2013. LNCS, vol. 8210, pp. 84–95. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Toyoaki Nishida
    • 1
  • Atsushi Nakazawa
    • 1
  • Yoshimasa Ohmoto
    • 1
  • Christian Nitschke
    • 1
  • Yasser Mohammad
    • 2
  • Sutasinee Thovuttikul
    • 1
  • Divesh Lala
    • 1
  • Masakazu Abe
    • 1
  • Takashi Ookaki
    • 1
  1. 1.Graduate School of InformaticsKyoto UniversitySakyo-kuJapan
  2. 2.Assiut UniversityAssiutEgypt

Personalised recommendations