Knowledge Representation for Adaptive and Self-aware Systems

  • Emil Vassev
  • Mike Hinchey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)

Abstract

This chapter presents the ASCENS approach to knowledge representation and reasoning for self-adaptive systems. The approach targets both the integration and promotion of autonomy and self-adaptation in software-intensive systems by providing a mechanism and methodology for specification and operation of knowledge for self-adaptive behavior. The approach is based on the KnowLang Framework, a formal approach to knowledge representation and reasoning developed within the ASCENS Project mandate. With KnowLang we build special knowledge bases meant to be integrated in software-intensive systems to establish the vital connection between knowledge, perception, and actions realizing self-adaptive behavior. At runtime, the knowledge is used against the perception of the world to generate appropriate actions in compliance to the system goals and beliefs.

Keywords

self-adaptive systems knowledge representation reasoning adaptive behavior awareness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012), http://www.ascens-ist.eu/
  2. 2.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors 37(1), 32–64 (1995)CrossRefGoogle Scholar
  3. 3.
    Ewens, W.J., Grant, G.R.: Stochastic processes (i): poisson processes and Markov chains. In: Statistical methods in Bioinformatics, 2nd edn., Springer, New York (2005)CrossRefGoogle Scholar
  4. 4.
    Galindo, C., Fernandez-Madrigal, J., Gonzalez, J., Saffiotti, A.: Robot task planning using semantic maps. Robotics and Autonomous Systems 56(11), 955–966 (2008)CrossRefGoogle Scholar
  5. 5.
    Holzapfel, H., Neubig, D., Waibel, A.: A dialogue approach to learning object descriptions and semantic categories. Robotics and Autonomous Systems 56(11), 1004–1013 (2008)CrossRefGoogle Scholar
  6. 6.
    Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 247–288. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    J. Ocón et al.: Autonomous controller - survey of the state of the art, ver. 1.3. Tech. Rep. GOAC, GMV-GOAC-TN01, Contract No. 22361/09/NL/RA, Oct. 31, ESTEC (2011)Google Scholar
  8. 8.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer 36(1), 41–50 (2003)CrossRefGoogle Scholar
  9. 9.
    Kruijff, G.J.M., Lison, P., Benjamin, T., Jacobsson, H., Hawes, N.: Incremental, multi-level processing for comprehending situated dialogue in human-robot interaction. In: Proceedings of the Symposium on Language and Robots (2007)Google Scholar
  10. 10.
    Littman, M.L.: Algorithms for sequential decision making, phD Thesis, Department of Computer Science, Brown University (1996)Google Scholar
  11. 11.
    Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 493–510. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Mozos, O., Jensfelt, P., Zender, H., Kruijff, G.J.M., Burgard, W.: An integrated system for conceptual spatial representations of indoor environments for mobile robots. In: Proceedings of the IROS 2007 Workshop: From Sensors to Human Spatial Concepts (FS2HSC), pp. 25–32 (2007)Google Scholar
  13. 13.
    Neapolitan, R.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  14. 14.
    Robinson, P., Bauer, S.: Introduction to Bio-Ontologies. CRC Press, Boca Raton (2011)Google Scholar
  15. 15.
    Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther, B.: D7.1: First Report on WP7 Requirement Specification and Scenario Description of the ASCENS Case Studies, ASCENS Deliverable (2011)Google Scholar
  16. 16.
    Soutchanski, M.: High-level robot programming and program execution. In: Proceedings of the ICAPS’03 Workshop on Plan Execution, AAAI Press, Menlo Park (2003)Google Scholar
  17. 17.
    Vassev, E.: KnowLang Grammar in BNF. Tech. Rep. Lero-TR-2012-04, Lero, University of Limerick, Ireland (2012)Google Scholar
  18. 18.
    Vassev, E.: Operational semantics for KnowLang ASK and TELL operators. Tech. Rep. Lero-TR-2012-05, Lero, University of Limerick, Ireland (2012)Google Scholar
  19. 19.
    Vassev, E., Hinchey, M.: The challenge of developing autonomic systems. IEEE Computer 43(12), 93–96 (2010)CrossRefGoogle Scholar
  20. 20.
    Vassev, E., Hinchey, M.: Towards a formal language for knowledge representation in autonomic service-component ensembles. In: Proceedings of the 3rd International Conference on Data Mining and Intelligent Information Technology Applications (ICMIA2011). AICIT, IEEE Xplore, pp. 228–235. IEEE Computer Society Press, Los Alamitos (2011)Google Scholar
  21. 21.
    Vassev, E., Hinchey, M.: Awareness in software-intensive systems. IEEE Computer 45(12) (2012)Google Scholar
  22. 22.
    Vassev, E., Hinchey, M.: Knowledge representation for cognitive robotic systems. In: Proceedings of the 15th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing Workshops (ISCORCW 2012), pp. 156–163. IEEE Computer Society Press, Los Alamitos (2012)CrossRefGoogle Scholar
  23. 23.
    Vassev, E., Hinchey, M.: Knowledge representation with KnowLang - the marXbot case study. In: Proceedings of the 11th IEEE International Conference on Cybernetic Intelligent Systems (CIS 2012), IEEE Computer Society Press, Los Alamitos (2012)Google Scholar
  24. 24.
    Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive behavior. In: Proceedings of C* Conference on Computer Science & Software Engineering (C3S2E ’12), pp. 113–117. ACM Press, New York (2012)Google Scholar
  25. 25.
    Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.: D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling for SCE Systems, ASCENS Deliverable (2012)Google Scholar
  26. 26.
    Vassev, E., Hinchey, M.: Engineering Requirements for Autonomy Features. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 377–401. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Programming Multi-Agent Systems (ProMAS) Workshop Affiliated with AAMAS 2012, Valencia, Spain, pp. 55–68 (2012)Google Scholar
  28. 28.
    Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998. Springer, Heidelberg (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emil Vassev
    • 1
  • Mike Hinchey
    • 1
  1. 1.Lero–the Irish Software Engineering Research CenterUniversity of LimerickLimerickIreland

Personalised recommendations