From Local to Global Knowledge and Back

  • Nicklas Hoch
  • Giacoma Valentina Monreale
  • Ugo Montanari
  • Matteo Sammartino
  • Alain Tcheukam Siwe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)


Two forms of knowledge are considered: declarative and procedural. The former is easy to extend but it is equipped with expensive deduction mechanisms, while the latter is efficiently executable but it can hardly anticipate all the special cases. In the first part of this chapter (Sections 2 and 3), we first define a syntactic representation of Soft Constraint Satisfaction Problems (SCSPs), which allows us to express dynamic programming (DP) strategies. For the e-mobility case study of ASCENS, we use Soft Constraint Logic Programming (SCLP) to program (in CIAO Prolog) and solve local optimization problems of single electric vehicles. Then we treat the global optimization problem of finding optimal parking spots for all the cars. We provide: (i) a Java orchestrator for the coordination of local SCLP optimizations; and (ii) a DP algorithm, which corresponds to a local to global propagation and back. In the second part of this chapter (Section 4) we assume that different subjects are entitled to decide. The case study concerns a smart grid model where various prosumers (producers-consumers) negotiate (in real time, according to the DEZENT approach) the cost of the exchanged energy. Then each consumer tries to plan an optimal consumption profile (computed via DP) where (s)he uses less energy when it is expensive and more energy when it is cheap, conversely for a producer. Finally, the notion of an aggregator is introduced, whose aim is to sell flexibility to the market.


Power Market Reinforcement Learning Smart Grid Procedural Knowledge Short Path Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    European power exchange,
  3. 3.
    Gestore mercati elettrici,
  4. 4.
    ASCENS: Requirement specification and scenario description of the ascens case studies, deliverable 7.1 (2011)Google Scholar
  5. 5.
    Barroso, L.A., Cavalcanti, T.H., Giesbertz, P., Purchala, K.: Classification of electricity market models worldwide. In: IEEE PES, International Symposium, pp. 9–16. IEEE, Los Alamitos (2005)Google Scholar
  6. 6.
    Belhomme, R., Real de Asua, R.C., Valtorta, G., Paice, A., Bouffard, F., Rooth, R., Losi, A.: Address - active demand for the smart grids of the future. In: CIRED Seminar: Smart Grids for Distribution, pp. 1–4. Google Scholar
  7. 7.
    Belhomme, R., Sebastian, M., Diop, A., Entem, M., Bouffard, F., Valtorta, G., De Simone, A., Cerero, R., Yuen, C., Karkkainen, S., Fritz, W.: Address technical and commercial architecture, deliverable ADDRESS D1.1 (2010),
  8. 8.
    Bertelé, U., Brioschi, F.: On non-serial dynamic programming. Journal of Combinatorial Theory, Series A 14(2), 137–148 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bistarelli, S., Montanari, U., Rossi, F.: Constraint solving over semirings. In: IJCAI, pp. 624–630 (1995)Google Scholar
  10. 10.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based contstraint logic programming: syntax and semantics. ACM Trans. Program. Lang. Syst. 23(1), 1–29 (2001)CrossRefGoogle Scholar
  12. 12.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and generalized shortest path problems. J. Heuristics 8(1), 25–41 (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM Trans. Comput. Log. 7(3), 563–589 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Unicast and multicast qos routing with soft-constraint logic programming. ACM Trans. Comput. Log. 12(1), 5 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M.V., López-García, P., Puebla, G.: The ciao prolog system. Reference manual. Tech. Rep. CLIP3/97.1, School of Computer Science, Technical University of Madrid, UPM (1997)Google Scholar
  16. 16.
    Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary game. Physica A: Statistical Mechanics and its Applications 246(3–4), 407–418 (1997)CrossRefGoogle Scholar
  18. 18.
    Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artif. Intell. 113(1-2), 41–85 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras (pre)sheaves and named sets. Higher-Order and Symbolic Computation 19(2-3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hewitt, C.: PLANNER: A language for proving theorems in robots. In: IJCAI, pp. 295–302 (1969)Google Scholar
  21. 21.
    Hoch, N., Monreale, V., Montanari, U., Sammartino, M.: Declarative vs procedural approach for scsp with an application to an e-mobility optimization problem. Internal Report (2014)Google Scholar
  22. 22.
    Hoch, N., Zemmer, K., Werther, B., Siegwart, R.: Electric vehicle travel optimization-customer satisfaction despite resource constraints. In: 2012 IEEE Intelligent Vehicles Symposium, pp. 172–177 (2012)CrossRefGoogle Scholar
  23. 23.
    Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg (2015)Google Scholar
  24. 24.
    Jaffar, J., Lassez, J.: Constraint logic programming. In: POPL, pp. 111–119 (1987)Google Scholar
  25. 25.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. J. Artif. Intell. Res. (JAIR) 4, 237–285 (1996)Google Scholar
  26. 26.
    Kohlas, J., Pouly, M.: Generic Inference: A Unifying Theory for Automated Reasoning. John Wiley, Chichester (2011)Google Scholar
  27. 27.
    Monreale, G.V., Montanari, U., Hoch, N.: Soft constraint logic programming for electric vehicle travel optimization. In: 26th Workshop on Logic Programming (2012)Google Scholar
  28. 28.
    Montanari, U., Siwe, A.T.: Real time market models and prosumer profiling. In: IEEE INFOCOM Workshops. pp. 7–12 (2013)Google Scholar
  29. 29.
    Montanari, U., Siwe, A.T.: Prosumers as aggregators in the dezent context of regenerative power production. In: IEEE SASO Workshops (2014)Google Scholar
  30. 30.
    Peters, E., Belhomme, R., Battle, C., Bouffard, F., Karkkainen, S., Six, D., Hommelberg, M.: Address: Scenarios and architecture for the active demand development in the smart grids of the future. In: CIRED 20th International Conference on Electricity Distribution, pp. 1–4 (2009)Google Scholar
  31. 31.
    Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  32. 32.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  33. 33.
    Siwe, A.T.: Prosumer planning in the DEZENT context of regenerative power production. Ph.D. thesis (2013)Google Scholar
  34. 34.
    Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44 (1988)Google Scholar
  35. 35.
    Tsang, E.P.K.: Foundations of constraint satisfaction. Computation in cognitive science. Academic Press, London (1993)Google Scholar
  36. 36.
    Wedde, H.F., Lehnhoff, S., Moritz, K.M., Handschin, E., Krause, O.: Distributed learning strategies for collaborative agents in adaptive decentralized power systems. In: IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS ’08), pp. 26–35 (2008)CrossRefGoogle Scholar
  37. 37.
    Wedde, H.F., Lehnhoff, S., Rehtanz, C., Krause, O.: Bottom-up self-organization of unpredictable demand and supply under decentralized power management. In: IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO ’08), pp. 74–83 (2008)CrossRefGoogle Scholar
  38. 38.
    Whitehead, D.: The el farol bar problem revisited: Reinforcement learning in a potential game. ESE Discussion Papers 186, Edinburgh School of Economics, University of Edinburgh (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicklas Hoch
    • 1
  • Giacoma Valentina Monreale
    • 2
  • Ugo Montanari
    • 2
  • Matteo Sammartino
    • 2
  • Alain Tcheukam Siwe
    • 3
  1. 1.Corporate Research GroupVolkswagen AGWolfsburgGermany
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly
  3. 3.IMT Institute for Advanced StudiesLuccaItaly

Personalised recommendations