Reconfigurable and Software-Defined Networks of Connectors and Components
Chapter
- 5 Citations
- 917 Downloads
Abstract
The diffusion of adaptive systems motivate the study of models of software entities whose interaction capabilities can evolve dynamically. In this paper we overview the contributions in the ASCENS project in the area of software defined networks and of reconfigurable connectors. In particular we highlight: (i) the definition of the Network-conscious pi-calculus and its use in the modeling and verification of the PASTRY protocol, and (ii) the mutual correspondence between different frameworks for defining networks of connectors together with two suitable enhancements for addressing dynamically changing systems.
Keywords
Network-conscious pi-calculus PASTRY overlay networks coalgebraic semantics HD-automata BIP Petri nets with boundaries algebras of connectors tile model reconfigurable connectors dynamic connectorsPreview
Unable to display preview. Download preview PDF.
References
- 1.Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. in Comp. Sci. 14(3), 329–366 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for reo. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 3.Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processes. Mathematical Structures in Computer Science 15(1), 1–35 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 4.Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: SEFM’06, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
- 5.Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP. IEEE Trans. Computers 57(10), 1315–1330 (2008)CrossRefMathSciNetGoogle Scholar
- 6.Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
- 7.Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 8.Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. Ph.D. thesis, Computer Science Department, University of Pisa (1999)Google Scholar
- 9.Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 19–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 11.Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 12.Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 382–401. Springer, Heidelberg (2014)CrossRefGoogle Scholar
- 13.Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3) (2013)Google Scholar
- 14.Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1-2), 131–176 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 15.Campbell, A.T., Katzela, I., Miki, K., Vicente, J.B.: Open signaling for ATM, internet and mobile networks (OPENSIG’98). Computer Communication Review 29(1), 97–108 (1999)CrossRefGoogle Scholar
- 16.Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. ENTCS 264(2), 63–81 (2010)MathSciNetGoogle Scholar
- 17.Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Correctness of Service Components and Service Component Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)Google Scholar
- 18.Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf. Comput. 156(1-2), 173–235 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 19.Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the pi-calculus using polymorphic types. Theor. Comput. Sci. 331(2-3), 325–365 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, pp. 93–104. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
- 21.Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
- 22.Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Scientific Annals of Computer Science 22(1), 201–251 (2012), doi:10.7561/SACS.2012.1.201CrossRefMathSciNetGoogle Scholar
- 23.Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 24.MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)Google Scholar
- 25.Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)Google Scholar
- 26.McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L., Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus networks. Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
- 27.Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–II. Inf. Comput. 100(1), 1–77 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
- 28.Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for the π-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 29.Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Montanari, U., Sammartino, M.: Network conscious π-calculus: A concurrent semantics. ENTCS 286, 291–306 (2012)MathSciNetGoogle Scholar
- 31.Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalgebraic semantics. Theor. Comput. Sci. 546(0), 188–224 (2014), doi:10.1016/j.tcs.2014.03.009CrossRefzbMATHMathSciNetGoogle Scholar
- 32.Openflow foundation website, http://www.openflow.org/
- 33.Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes 17, 40–52 (1992)CrossRefGoogle Scholar
- 34.Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar
- 35.Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware, pp. 329–350 (2001)Google Scholar
- 36.Sammartino, M.: A Network-Aware Process Calculus for Global Computing and its Categorical Framework. Ph.D. thesis, University of Pisa (2013)Google Scholar
- 37.Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation. In: ICE’09. EPTCS, vol. 12, pp. 87–98 (2009)Google Scholar
- 38.Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 39.Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture. Comput. Commun. Rev. 26, 5–18 (1996)CrossRefGoogle Scholar
- 40.Viroli, M.: A core calculus for correlation in orchestration languages. J. Log. Algebr. Program. 70(1), 74–95 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 41.Rekhter, Y.: A border gateway protocol 4 (bgp-4). (March 1995), http://www.ietf.org/rfc/rfc1771.txt
Copyright information
© Springer International Publishing Switzerland 2015