Reconfigurable and Software-Defined Networks of Connectors and Components

  • Roberto Bruni
  • Ugo Montanari
  • Matteo Sammartino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)


The diffusion of adaptive systems motivate the study of models of software entities whose interaction capabilities can evolve dynamically. In this paper we overview the contributions in the ASCENS project in the area of software defined networks and of reconfigurable connectors. In particular we highlight: (i) the definition of the Network-conscious pi-calculus and its use in the modeling and verification of the PASTRY protocol, and (ii) the mutual correspondence between different frameworks for defining networks of connectors together with two suitable enhancements for addressing dynamically changing systems.


Network-conscious pi-calculus PASTRY overlay networks coalgebraic semantics HD-automata BIP Petri nets with boundaries algebras of connectors tile model reconfigurable connectors dynamic connectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. in Comp. Sci. 14(3), 329–366 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for reo. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processes. Mathematical Structures in Computer Science 15(1), 1–35 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: SEFM’06, pp. 3–12. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  5. 5.
    Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP. IEEE Trans. Computers 57(10), 1315–1330 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. Ph.D. thesis, Computer Science Department, University of Pisa (1999)Google Scholar
  9. 9.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bruni, R., Melgratti, H., Montanari, U.: Connector algebras, Petri nets, and BIP. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 19–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 382–401. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3) (2013)Google Scholar
  14. 14.
    Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1-2), 131–176 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Campbell, A.T., Katzela, I., Miki, K., Vicente, J.B.: Open signaling for ATM, internet and mobile networks (OPENSIG’98). Computer Communication Review 29(1), 97–108 (1999)CrossRefGoogle Scholar
  16. 16.
    Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. ENTCS 264(2), 63–81 (2010)MathSciNetGoogle Scholar
  17. 17.
    Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Correctness of Service Components and Service Component Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)Google Scholar
  18. 18.
    Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf. Comput. 156(1-2), 173–235 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-automata for the pi-calculus using polymorphic types. Theor. Comput. Sci. 331(2-3), 325–365 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, pp. 93–104. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  21. 21.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  22. 22.
    Jongmans, S.-S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Scientific Annals of Computer Science 22(1), 201–251 (2012), doi:10.7561/SACS.2012.1.201CrossRefMathSciNetGoogle Scholar
  23. 23.
    Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)Google Scholar
  25. 25.
    Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)Google Scholar
  26. 26.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G.M., Peterson, L.L., Rexford, J., Shenker, S., Turner, J.S.: Openflow: enabling innovation in campus networks. Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  27. 27.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I–II. Inf. Comput. 100(1), 1–77 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for the π-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Montanari, U., Sammartino, M.: Network conscious π-calculus: A concurrent semantics. ENTCS 286, 291–306 (2012)MathSciNetGoogle Scholar
  31. 31.
    Montanari, U., Sammartino, M.: A network-conscious π-calculus and its coalgebraic semantics. Theor. Comput. Sci. 546(0), 188–224 (2014), doi:10.1016/j.tcs.2014.03.009CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Openflow foundation website,
  33. 33.
    Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM SIGSOFT Software Engineering Notes 17, 40–52 (1992)CrossRefGoogle Scholar
  34. 34.
    Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar
  35. 35.
    Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware, pp. 329–350 (2001)Google Scholar
  36. 36.
    Sammartino, M.: A Network-Aware Process Calculus for Global Computing and its Categorical Framework. Ph.D. thesis, University of Pisa (2013)Google Scholar
  37. 37.
    Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation. In: ICE’09. EPTCS, vol. 12, pp. 87–98 (2009)Google Scholar
  38. 38.
    Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Tennenhouse, D.L., Wetherall, D.J.: Towards an active network architecture. Comput. Commun. Rev. 26, 5–18 (1996)CrossRefGoogle Scholar
  40. 40.
    Viroli, M.: A core calculus for correlation in orchestration languages. J. Log. Algebr. Program. 70(1), 74–95 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Rekhter, Y.: A border gateway protocol 4 (bgp-4). (March 1995),

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Ugo Montanari
    • 1
  • Matteo Sammartino
    • 1
  1. 1.Department of Computer ScienceUniversity of PisaItaly

Personalised recommendations