The E-mobility Case Study

  • Nicklas Hoch
  • Henry-Paul Bensler
  • Dhaminda Abeywickrama
  • Tomáš Bureš
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)

Abstract

Electro-mobility (e-mobility) is one of the promising technologies being considered by automotive OEMs as an alternative to internal combustion engines as a means of propulsion. The e-mobility case study provides a novel example of a relevant industry application within the ASCENS framework. An overview of the system design is given which describes how e-mobility is conceptualized and then transformed using the ensemble development life cycle (EDLC) approach into a distributed autonomic (i.e self-aware, self-adaptive) component-based software system. The system requirements engineering is based on the state-of-the-affairs (SOTA) approach and the invariant refinement method (IRM) which are both revisited and applied. Regarding the implementation and deployment of the system, a dependable emergent ensembles of components (DEECo) approach is utilized. The DEECo components and ensembles are coded and deployed using the Java-based jDEECo runtime environment. The runtime environment integrates the multi-agent transport simulation tool (MATSim), which is used to predict the effects of the physical interactions of users, vehicles and infrastructure resources. jDEECo handles multiple MATSim instances to allow for different belief states between components and ensembles.

Keywords

software engineering methodologies requirements analysis autonomic systems self-organization ensemble-oriented systems scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeywickrama, D.B., Hoch, N., Zambonelli, F.: Engineering and implementing software architectural patterns based on feedback loops. International Journal for Parallel and Distributed Computing, Special Issue on Enabling Technologies for Collaboration to appear, 19 (2015)Google Scholar
  2. 2.
    Abeywickrama, D.B., Hoch, N., Zambonelli, F.: Simsota: engineering and simulating feedback loops for self-adaptive systems. In: International C* Conference on Computer Science & Software Engineering (C3S2E13), Porto, Portugal, July 10 - 12 (2013)Google Scholar
  3. 3.
    Abeywickrama, D.B., Zambonelli, F., Hoch, N.: Towards simulating architectural patterns for self-aware and self-adaptive systems. In: Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems Workshops, SASOW, Lyon, France, September 10-14 (2012)Google Scholar
  4. 4.
    Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Monreale, G.V., Montanari, U.: Pugliese, Rosario Serbedzija, N.B., Wirsing, M., Zambonelli, F.: A life cycle for the development of autonomic systems: The e-mobility showcase. In: 7th IEEE International Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW), Philadelphia, PA, USA, September 9-13 (2013)Google Scholar
  5. 5.
    Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Deeco: An ensemble-based component system. In: Proceedings of the 16th International ACM Sigsoft Symposium on Component-based Software Engineering (CBSE ’13), pp. 81–90. ACM Press, New York (2013)CrossRefGoogle Scholar
  6. 6.
    Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 405–428. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collaboration patterns for autonomic service ensembles. In: 2011 International Conference on Collaboration Technologies and Systems (CTS), May 2011, pp. 508–515 (2011)CrossRefGoogle Scholar
  8. 8.
    Cascetta, E.: Transportation Systems Analysis - Models and Applications, 2nd edn. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Geering, H.P.: Regelungstechnik. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Hall, R.W.: Handbook of Transportation Science, 2nd edn. International Series in Operations Research & Management Science, vol. 56. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Hoch, N., Monreale, G.V., Montanari, U., Sammartino, M., Siwe, A.T.: From Local to Global Knowledge and Back. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 185–220. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Hoch, N., Werther, B., Bensler, H.P., Masuch, N., Luetzenberger, M., Hessler, A., Albayrak, S., Siegwart, R.Y.: A user-centric approach for efficient daily mobility planning in e-vehicle infrastructure networks. In: Meyer, G., Valldorf, J. (eds.) Advanced Microsystems for Automotive Applications 2011. VDI-Buch, pp. 185–198. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Hoch, N., Zemmer, K., Werther, B., Siegwart, R.Y.: Electric vehicle travel optimization-customer satisfaction despite resource constraints. In: 2012 IEEE Intelligent Vehicles Symposium IV, Alcal de Henares, Madrid, Spain, June 3-7 (2012)Google Scholar
  14. 14.
    Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Keznikl, J., Bures, T., Plasil, F., Gerostathopoulos, I., Hnetynka, P., Hoch, N.: Design of ensemble-based component systems by invariant refinement. In: Proc. of the 16th International ACM SIGSOFT Symposium on Component Based Software Engineering (CBSE ’13), ACM, Vancouver, Canada (2013)Google Scholar
  16. 16.
    MATSim: Multi-Agent Transport Simulation (MATSim) (August 2014), http://www.matsim.org/
  17. 17.
    Monreale, G.V., Montanari, U., Hoch, N.: Soft constraint logic programming for electric vehicle travel optimization. CoRR abs/1212.2056, 17 (2012)Google Scholar
  18. 18.
    De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design, Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Puviani, M., Cabri, G., Zambonelli, F.: A taxonomy of architectural patterns for self-adaptive systems. In: Proceedings of the International C* Conference on Computer Science and Software Engineering (C3S2E ’13), pp. 77–85. ACM Press, New York (2013)CrossRefGoogle Scholar
  20. 20.
    Russell, S., Norvig, P.: Artificial Intelligence - a modern approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)Google Scholar
  21. 21.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Chichester (2009)Google Scholar
  22. 22.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2), 115–152 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicklas Hoch
    • 1
  • Henry-Paul Bensler
    • 1
  • Dhaminda Abeywickrama
    • 2
  • Tomáš Bureš
    • 3
  • Ugo Montanari
    • 4
  1. 1.Corporate Research GroupVolkswagen AGWolfsburgGermany
  2. 2.Fraunhofer FOKUSBerlinGermany
  3. 3.Faculty of Mathematics and Physics, Department of Distributed and Dependable SystemsCharles University PraguePragueCzech Republic
  4. 4.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations