Engineering Requirements for Autonomy Features

  • Emil Vassev
  • Mike Hinchey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)

Abstract

This chapter outlines an approach to Autonomy Requirements Engineering (ARE). ARE targets the integration and promotion of autonomy in software-intensive systems by providing a mechanism and methodology for elicitation and expression of autonomy requirements. ARE relies on goal-oriented requirements engineering to elicit and define system goals, and uses the generic autonomy requirements model to derive and define assistive and, eventually, alternative objectives. The system may pursue these “self-* objectives” in the presence of factors threatening the achievement of the initial system goals. Once identified, the autonomy requirements are specified with the KnowLang language. To demonstrate the ARE’s ability to handle autonomy requirements for autonomic ensembles, the ARE’s application to the ASCENS Science Clouds case study is presented and discussed in detail.

Keywords

autonomic computing autonomy requirements requirements engineering self-adaptive behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeywickrama, D., Bicocchi, N., Zambonelli, F.: SOTA: Towards a general model for self-adaptive systems. In: The IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), June 2012, pp. 48–53 (2012)Google Scholar
  2. 2.
    ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012), http://www.ascens-ist.eu/
  3. 3.
    Bureš, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: The Invariant Refinement Method. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 405–428. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Cheng, B., Atlee, J.: Research directions in requirements engineering. In: Proceedings of the 2007 Conference on Future of Software Engineering (FOSE 2007), pp. 285–303. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  5. 5.
    Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisitions. Science of Computer Programming 20, 3–50 (1993)CrossRefMATHGoogle Scholar
  6. 6.
    Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Proceedings of the IEEE International Symposium on Requirements Engineering (RE 1995), pp. 140–147. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  7. 7.
    Goldsby, H., Sawyer, P., Bencomo, N., Hughes, D., Cheng, B.: Goal-based modeling of dynamically adaptive system requirements. In: Proceedings of the 15th Annual IEEE International Conference on the Engineering of Computer Based Systems (ECBS), IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  8. 8.
    Haumer, P., Pohl, K., Weidenhaupt, K.: Requirements elicitation and validation with real world scenes. IEEE Transactions on Software Engineering – Special Issue on Scenario Management, 1036–1054 (1998)Google Scholar
  9. 9.
    Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    van Lamsweerde, A.: Requirements engineering in the year 00: A research perspective. In: Proceedings of the 22nd International Conference on Software Engineering (ICSE’2000), pp. 5–19. ACM Press, New York (2000)Google Scholar
  11. 11.
    van Lamsweerde, A.: Requirements engineering in the Year 00: A research perspective. In: Proceedings of the 22nd IEEE International Conference on Software Engineering (ICSE-2000), pp. 5–19. ACM Press, New York (2000)Google Scholar
  12. 12.
    van Lamsweerde, A., Darimont, R., Massonet, P.: Goal-directed elaboration of requirements for a meeting scheduler: Problems and lessons learnt. In: Proceedings of the 2nd International IEEE Symposium on Requirements Engineering, pp. 194–203. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  13. 13.
    Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design of autonomic application software. In: Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative Research (CASCON 2006), p. 7. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bures, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud computing. In: Proceedings of the 3rd Workshop on Challenges for achieving Self-Awareness in Autonomic Systems, Philadelphia, USA, September 2013, pp. 1–6 (2013)Google Scholar
  15. 15.
    Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bureš, T.: The Autonomic Cloud. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 495–512. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Mylopoulos, J., Chung, L., Nixon, B.: Representing and using non-functional requirements: a process-oriented approach. IEEE Transactions on Software Engineering 18(6), 483–497 (1992)CrossRefGoogle Scholar
  17. 17.
    Rolland, C., Souveyet, C., Achour, C.: Guiding goal-modeling using scenarios. IEEE Transactions on Software Engineering – Special Issue on Scenario Management, 1055–1071 (1998)Google Scholar
  18. 18.
    Ross, D., Schoman, K.: Structured analysis for requirements definition. IEEE Transactions on Software Engineering 3(1), 6–15 (1977)CrossRefGoogle Scholar
  19. 19.
    Savor, T., Seviora, R.: An approach to automatic detection of software failures in real-time systems. In: Proceedings of the IEEE Real-Time Technology and Applications Symposium, pp. 136–147. IEEE Computer Society Press, Los Alamitos (1997)CrossRefGoogle Scholar
  20. 20.
    Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther, B.: D7.1: First Report on WP7 Requirement Specification and Scenario Description of the ASCENS Case Studies, aSCENS Deliverable (2011)Google Scholar
  21. 21.
    Sutcliffe, A., Fickas, S., Sohlberg, M.: PC-RE a method for personal and context requirements engineering with some experience. Requirements Engineering Journal 11, 1–17 (2006)CrossRefGoogle Scholar
  22. 22.
    Vassev, E., Hinchey, M.: ASSL: A software engineering approach to autonomic computing. IEEE Computer 42(6), 106–109 (2009)CrossRefGoogle Scholar
  23. 23.
    Vassev, E., Hinchey, M.: Autonomy requirements engineering. IEEE Computer 46(8), 82–84 (2013)CrossRefGoogle Scholar
  24. 24.
    Vassev, E., Hinchey, M.: Autonomy requirements engineering. In: Proceedings of the 14th IEEE International Conference on Information Reuse and Integration (IRI’13), pp. 175–184. IEEE Computer Society Press, Los Alamitos (2013)Google Scholar
  25. 25.
    Vassev, E., Hinchey, M.: Autonomy requirements engineering: A case study on the BepiColombo Mission. In: Proceedings of the C* Conference on Computer Science & Software Engineering (C3S2E’13), pp. 31–41. ACM Press, New York (2013)CrossRefGoogle Scholar
  26. 26.
    Vassev, E., Hinchey, M.: On the autonomy requirements for space missions. In: Proceedings of the 16th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing Workshops (ISCORCW 2013), IEEE Computer Society Press, Los Alamitos (2013)Google Scholar
  27. 27.
    Vassev, E., Hinchey, M., Balasubramaniam, D., Dobson, S.: An ASSL approach to handling uncertainty in self-adaptive systems. In: Proceedings of the 34th annual IEEE Software Engineering Workshop (SEW 34), pp. 11–18. IEEE Computer Society Press, Los Alamitos (2011)Google Scholar
  28. 28.
    Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.: D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling for SCE Systems, aSCENS Deliverable (2012)Google Scholar
  29. 29.
    Vassev, E.: Towards a Framework for Specification and Code Generation of Autonomic Systems. Ph.D. thesis, Computer Science and Software Engineering Department, Concordia University, Quebec, Canada (2008)Google Scholar
  30. 30.
    Vassev, E.: ASSL: Autonomic System Specification Language - A Framework for Specification and Code Generation of Autonomic Systems. LAP Lambert Academic Publishing, Germany (2009)Google Scholar
  31. 31.
    Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Missions. NASA Monographs in Systems and Software Engineering. Springer, Heidelberg (2014), doi:10.1007/978-3-319-09816-6CrossRefGoogle Scholar
  32. 32.
    Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer, Heidelberg (2015)Google Scholar
  33. 33.
    Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2013), http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emil Vassev
    • 1
  • Mike Hinchey
    • 1
  1. 1.Lero–the Irish Software Engineering Research CenterUniversity of LimerickLimerickIreland

Personalised recommendations