The SCEL Language: Design, Implementation, Verification

  • Rocco De Nicola
  • Diego Latella
  • Alberto Lluch Lafuente
  • Michele Loreti
  • Andrea Margheri
  • Mieke Massink
  • Andrea Morichetta
  • Rosario Pugliese
  • Francesco Tiezzi
  • Andrea Vandin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)


SCEL (Service Component Ensemble Language) is a new language specifically designed to rigorously model and program autonomic components and their interaction, while supporting formal reasoning on their behaviors. SCEL brings together various programming abstractions that allow one to directly represent aggregations, behaviors and knowledge according to specific policies. It also naturally supports programming interaction, self-awareness, context-awareness, and adaptation. The solid semantic grounds of the language is exploited for developing logics, tools and methodologies for formal reasoning on system behavior to establish qualitative and quantitative properties of both the individual components and the overall systems.


Autonomic computing Programming languages Adaptation policies Formal methods Verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeywickrama, D.B., Combaz, J., Horký, V., Keznikl, J., Kofroň, J., Lafuente, A.L., Loreti, M., Margheri, A., Mayer, P., Monreale, V., Montanari, U., Pinciroli, C., Tůma, P., Vandin, A., Vassev, E.: Tools for Ensemble Design and Runtime. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 429–448. Springer, Heidelberg (2015)Google Scholar
  2. 2.
    Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language for probabilistic object systems. In: Cerone, A., Wiklicky, H. (eds.) QAPL 2005. ENTCS, vol. 153(2), pp. 213–239. Elsevier (2006)Google Scholar
  3. 3.
    AlTurki, M., Meseguer, J.: pVeStA: A parallel statistical model checking and quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Belzner, L.: Action programming in rewriting logic (technical communication). Theory and Practice of Logic Programming, Online Supplement (2013)Google Scholar
  5. 5.
    Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) service component ensembles in rewriting logic. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 188–211. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Bentea, L., Ölveczky, P.C.: A probabilistic strategy language for probabilistic rewrite theories and its application to cloud computing. In: Martí-Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 77–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM Trans. Comput. Log. 7(3), 563–589 (2006)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: A tutorial. Perform. Eval. 70(5), 317–349 (2013)CrossRefGoogle Scholar
  11. 11.
    Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: Modelling and analyzing adaptive self-assembly strategies with Maude. In: Durán, F. (ed.) WRLA 2012. LNCS, vol. 7571, pp. 118–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Monreale, G.V., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli, F.: A Life Cycle for the Development of Autonomic Systems: The e-mobility showcase. In: Proc. of SASOW, pp. 71–76. IEEE, Los Alamitos (2013)Google Scholar
  13. 13.
    Cabri, G., Capodieci, N., Cesari, L., De Nicola, R., Pugliese, R., Tiezzi, F., Zambonelli, F.: Self-expression and dynamic attribute-based ensembles in SCEL. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 147–163. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scalable Application-Level Anycast for Highly Dynamic Groups. In: Stiller, B., Carle, G., Karsten, M., Reichl, P. (eds.) NGC 2003 and ICQT 2003. LNCS, vol. 2816, pp. 47–57. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.: Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  17. 17.
    Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Correctness of Service Components and Service Component Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)Google Scholar
  18. 18.
    Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The Ponder Policy Specification Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    De Nicola, R., Ferrari, G.-L., Loreti, M., Pugliese, R.: A Language-Based Approach to Autonomic Computing. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2013), CrossRefGoogle Scholar
  20. 20.
    De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents Interaction and Mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)CrossRefGoogle Scholar
  21. 21.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 435–446. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of stochastic process calculi. ACM Comput. Surv. 46(1), 1–5 (2013)CrossRefGoogle Scholar
  23. 23.
    De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni, V., Tiezzi, F.: Programming and verifying component ensembles. In: Bensalem, S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp. 69–83. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A Formal Approach to Autonomic Systems Programming: The SCEL Language. TAAS 9(2), 7 (2014)CrossRefGoogle Scholar
  25. 25.
    Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable availability under denial of service attacks through formal patterns. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Gilmore, S., Tribastone, M., Vandin, A.: An analysis pathway for the quantitative evaluation of public transport systems. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 71–86. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  27. 27.
    Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg (2015)Google Scholar
  28. 28.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  29. 29.
    IBM: Autonomic Computing Policy Language – ACPL,
  30. 30.
    IBM: An architectural blueprint for autonomic computing. Tech. rep., IBM, Third edition (June 2005)Google Scholar
  31. 31.
    Khakpour, N., Jalili, S., Talcott, C.L., Sirjani, M., Mousavi, M.R.: Formal modeling of evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-based communication primitives for autonomic computing. In: Bertrand, N., Bortolussi, L. (eds.) Proceedings of the Twelfth Workshop on Quantitative Aspects of Programming Languages (QAPL 2014). Electronic Proceedings in Theoretical Computer Science (EPTCS), pp. 1–16 (2014), doi:10.4204/EPTCS.154.1Google Scholar
  33. 33.
    Latella, D., Loreti, M., Massink, M., Senni, V.: On StocS: a Stochastic extension of SCEL. Tech. Rep. 11, ASCENS Project (February 2014),
  34. 34.
    Loreti, M., Margheri, A., Pugliese, R., Tiezzi, F.: On programming and policing autonomic computing systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part I. LNCS, vol. 8802, pp. 164–183. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  35. 35.
    Margheri, A., Masi, M., Pugliese, R., Tiezzi, F.: A Formal Software Engineering Approach to Policy-based Access Control. Tech. rep., DiSIA, Univ. Firenze (2013), available at
  36. 36.
    Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming and Policing Autonomic Computing Systems. In: UIC/ATC, pp. 404–409. IEEE, Los Alamitos (2013)Google Scholar
  37. 37.
    Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic abstractions for programming and policing autonomic computing systems. Tech. rep., Univ. Firenze (2013),
  38. 38.
    Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl, J., Bure, T.: The autonomic cloud: A vision of voluntary, peer-2-peer cloud computing. In: Proc. of SASOW, pp. 89–94. IEEE, Los Alamitos (2013)Google Scholar
  39. 39.
    OASIS XACML TC: eXtensible Access Control Markup Language (XACML) version 3.0 (January 2013),
  40. 40.
    O’Grady, R., Groß, R., Christensen, A.L., Dorigo, M.: Self-assembly strategies in a group of autonomous mobile robots. Auton. Robots 28(4), 439–455 (2010), doi:10.1007/s10514-010-9177-0CrossRefGoogle Scholar
  41. 41.
    Pianini, D., Sebastio, S., Vandin, A.: Distributed statistical analysis of complex systems modeled through a chemical metaphor. In: HPCS (MOSPAS workshop), pp. 416–423. IEEE, Los Alamitos (2014)Google Scholar
  42. 42.
    Pinciroli, C., Bonani, M., Mondada, F., Dorigo, M.: Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 471–494. Springer, Heidelberg (2015)Google Scholar
  43. 43.
    Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr. Program. 60-61, 17–139 (2004)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Project InterLink (2007),
  45. 45.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  46. 46.
    Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  47. 47.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. TAAS 4(2) (2009)Google Scholar
  48. 48.
    Saraswat, V., Rinard, M.: Concurrent constraint programming. In: POPL, pp. 232–245. ACM Press, New York (1990)Google Scholar
  49. 49.
    Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (2000)CrossRefGoogle Scholar
  50. 50.
    Sebastio, S., Amoretti, M., Lluch-Lafuente, A.: A computational field framework for collaborative task execution in volunteer clouds. In: SEAMS, pp. 105–114. ACM, New York (2014)Google Scholar
  51. 51.
    Sebastio, S., Vandin, A.: MultiVeStA: statistical model checking for discrete event simulators. In: Horvath, A., Buchholz, P., Cortellessa, V., Muscariello, L., Squillante, M.S. (eds.) 7th International Conference on Performance Evaluation Methodologies and Tools, ValueTools ’13, Torino, Italy, December 10-12, 2013, pp. 310–315. ACM Press, New York (2013), Google Scholar
  52. 52.
    Sen, K., Viswanathan, M., Agha, G.A.: Vesta: A statistical model-checker and analyzer for probabilistic systems. In: Baier, C., Chiola, G., Smirni, E. (eds.) QEST 2005, pp. 251–252. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  53. 53.
    Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.Z., McDermid, J.A., Paige, R.F.: Large-scale complex IT systems. Commun. ACM 55(7), 71–77 (2012)CrossRefGoogle Scholar
  54. 54.
    Vassev, E., Hinchey, M.: Knowledge Representation for Adaptive and Self-aware Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 221–247. Springer, Heidelberg (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rocco De Nicola
    • 1
  • Diego Latella
    • 2
  • Alberto Lluch Lafuente
    • 1
    • 3
  • Michele Loreti
    • 4
  • Andrea Margheri
    • 4
  • Mieke Massink
    • 2
  • Andrea Morichetta
    • 1
  • Rosario Pugliese
    • 4
  • Francesco Tiezzi
    • 1
  • Andrea Vandin
    • 1
    • 5
  1. 1.IMT Institute for Advanced Studies LuccaItaly
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNRItaly
  3. 3.DTU ComputeThe Technical University of DenmarkDenmark
  4. 4.Università degli Studi di FirenzeItaly
  5. 5.University of SouthamptonUK

Personalised recommendations