Advertisement

Efficient Integer Encoding for Homomorphic Encryption via Ring Isomorphisms

  • Matthias GeihsEmail author
  • Daniel Cabarcas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8895)

Abstract

Homomorphic encryption allows computation on encrypted data at the cost of a significant loss in efficiency. In this paper we propose a powerful integer encoding for homomorphic encryption. The proposed encoding offers more efficient and convenient homomorphic computations on integers compared to previously used methods. This is possible by making the message space of the encryption scheme isomorphic to an integer quotient ring. The encoding can be used across various lattice-based homomorphic encryption schemes such as NTRU and various ring-LWE based schemes. We analyse the efficiency of our proposed encoding, which shows a significant gain compared to a naive integer encoding for a ring-LWE based scheme.

Keywords

Integer encoding Fully homomorphic encryption Lattice based cryptography Privacy 

References

  1. 1.
    Asharov, G., Jain, A., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. Cryptology ePrint Archive, Report 2011/613 (2011). http://eprint.iacr.org/
  2. 2.
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013) Google Scholar
  3. 3.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapSVP. Cryptology ePrint Archive, Report 2012/078 (2012). http://eprint.iacr.org/
  4. 4.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–325. ACM, New York (2012)Google Scholar
  5. 5.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 97–106 (2011)Google Scholar
  6. 6.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011) Google Scholar
  7. 7.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). crypto.stanford.edu/craig
  8. 8.
    Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing ORAM and using it efficiently for secure computation. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg (2013) Google Scholar
  9. 9.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012) Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012) Google Scholar
  11. 11.
    Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on encrypted data. Cryptology ePrint Archive, Report 2012/323 (2012). http://eprint.iacr.org/
  12. 12.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998) Google Scholar
  13. 13.
    Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Public-Key Cryptography and Computational Number Theory: Proceedings of the International Conference organized by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11–15, 2000, p. 77. De Gruyter (2001)Google Scholar
  14. 14.
    Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM, New York (2011). http://doi.acm.org/10.1145/2046660.2046682
  15. 15.
    Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011) Google Scholar
  16. 16.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1219–1234. ACM, New York (2012)Google Scholar
  17. 17.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010) Google Scholar
  18. 18.
    Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009) Google Scholar
  19. 19.
    Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010) Google Scholar
  20. 20.
    Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report 2011/133 (2011). http://eprint.iacr.org/
  21. 21.
    Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.Universidad Nacional de Colombia Sede MedellínMedellínColombia

Personalised recommendations