Advertisement

How to Leak a Secret and Reap the Rewards Too

  • Vishal SaraswatEmail author
  • Sumit Kumar Pandey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8895)

Abstract

We introduce the notion of the designated identity verifier ring signature (DIVRS) and give a generic construction from any given ordinary ring signature scheme. In a DIVRS scheme, the signer \(S\) of a message has the additional capability to prove, at time of his choice, to a designated identity verifier \(V\) that \(S\) is the actual signer without revealing his identity to anyone else. Our definition of a DIVRS retains applicability for all previous applications of a ring signature with an additional capability which can be seen as mix of a designated verifier signature [7] and an anonymous signature [14, 18]. Our generic transformation preserves all the properties of the original ring signature without significant overhead.

Keywords

Designated identity verifier Ring signature Signer anonymity Signing proof Unpretendability 

References

  1. 1.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). 353 CrossRefGoogle Scholar
  2. 2.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). 356 CrossRefGoogle Scholar
  3. 3.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). 348 CrossRefGoogle Scholar
  4. 4.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). 348, 351 Google Scholar
  5. 5.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004). 348 CrossRefGoogle Scholar
  6. 6.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984). 353 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996). 348, 350, 351, 359 Google Scholar
  8. 8.
    Klonowski, M., Krzywiecki, Ł., Kutyłowski, M., Lauks, A.: Step-out ring signatures. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 431–442. Springer, Heidelberg (2008). 352 CrossRefGoogle Scholar
  9. 9.
    Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.: Toward the fair anonymous signatures: deniable ring signatures. IEICE Trans. 90–A(1), 54–64 (2007). 352 CrossRefGoogle Scholar
  10. 10.
    Lee, K.-C., Wen, H.-A., Hwang, T.: Convertible ring signature. IEE Proc. Commun. 152(4), 411–414 (2005). 352 CrossRefGoogle Scholar
  11. 11.
    Lv, J., Wang, X.: Verifiable ring signature. In: DMS 2003 - The 9th International Conference on Distribted Multimedia Systems, pp. 663–667 (2003) 351 Google Scholar
  12. 12.
    Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002). 351 CrossRefGoogle Scholar
  13. 13.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). 348, 351, 365 CrossRefGoogle Scholar
  14. 14.
    Saraswat, V., Yun, A.: Anonymous signatures revisited. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 140–153. Springer, Heidelberg (2009). 348, 350, 351 CrossRefGoogle Scholar
  15. 15.
    Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003). 351 CrossRefGoogle Scholar
  16. 16.
    Susilo, W., Mu, Y.: Deniable ring authentication revisited. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 149–163. Springer, Heidelberg (2004). 351 CrossRefGoogle Scholar
  17. 17.
    Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., Kalam, A. (eds.) Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp. 271–286. Springer, New York (2004). 352 CrossRefGoogle Scholar
  18. 18.
    Yang, G., Wong, D.S., Deng, X., Wang, H.: Anonymous signature schemes. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 347–363. Springer, Heidelberg (2006). 348, 350, 351 CrossRefGoogle Scholar
  19. 19.
    Zeng, S., Jiang, S., Qin, Z.: A new conditionally anonymous ring signature. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 479–491. Springer, Heidelberg (2011). 352 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.C.R.Rao Advanced Institute of Mathematics Statistics and Computer ScienceHyderabadIndia

Personalised recommendations