Advertisement

Private Asymmetric Fingerprinting: A Protocol with Optimal Traitor Tracing Using Tardos Codes

  • Caroline Fontaine
  • Sébastien Gambs
  • Julien LoliveEmail author
  • Cristina Onete
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8895)

Abstract

Active fingerprinting schemes were originally invented to deter malicious users from illegally releasing an item, such as a movie or an image. To achieve this, each time an item is released, a different fingerprint is embedded in it. If the fingerprint is created from an anti-collusion code, the fingerprinting scheme can trace colluding buyers who forge fake copies of the item using their own legitimate copies. Charpentier, Fontaine, Furon and Cox were the first to propose an asymmetric fingerprinting scheme based on Tardos codes – the most efficient anti-collusion codes known to this day. However, their work focuses on security but does not preserve the privacy of buyers. To address this issue, we introduce the first privacy-preserving asymmetric fingerprinting protocol based on Tardos codes. This protocol is optimal with respect traitor tracing. We also formally define the properties of correctness, anti-framing, traitor tracing, as well as buyer-unlinkability. Finally, we prove that our protocol achieves these properties and give exact bounds for each of them.

Keywords

Fingerprinting Watermarking Anti-collusion code Tardos code Privacy Anonymity 

References

  1. 1.
    Abdul, W., Gaborit, P., Carré, P.: Private anonymous fingerprinting for color images in the wavelet domain. In: Proceedings of SPIE Multimedia on Mobile Devices, vol. 7542 (2010)Google Scholar
  2. 2.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) Advances of Cryptology EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer-Verlag, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC), pp. 103–112 (1988)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Brassard, G., Crépeau, C., Robert, J.M.: All-or-nothing disclosure of secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987) Google Scholar
  6. 6.
    Camenisch, J.L.: Efficient anonymous fingerprinting with group signatures. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 415–428. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  7. 7.
    Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Cérou, F., Furon, T., Guyader, A.: Experimental assessment of the reliability for watermarking and fingerprinting schemes. EURASIP J. Inf. Secur. 2008, 12 (2008). Article ID 414962Google Scholar
  9. 9.
    Charpentier, A., Fontaine, C., Furon, T., Cox, I.: An asymmetric fingerprinting scheme based on tardos codes. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 43–58. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991) Google Scholar
  11. 11.
    Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  12. 12.
    Gambs, S., Onete, C., Robert, J.: Prover anonymous and deniable distance-bounding authentication. In: Proceedings of ACM AsiaCCS 2014, Accepted for publication. ACM Press (2014)Google Scholar
  13. 13.
    Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–587. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  18. 18.
    Kohlweiss, M., Maurer, U., Onete, C., Tackmann, B., Venturi, D.: Anonymity-preserving public-key encryption: a constructive approach. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 19–39. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Lindell, A.Y.: Efficient fully-simulatable oblivious transfer. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 52–70. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Proceedings of the 12-th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 448–457. SIAM (2001)Google Scholar
  21. 21.
    Oprea, A., Bowers, K.D.: Authentic time-stamps for archival storage. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 136–151. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  22. 22.
    Pfitzmann, B., Sadeghi, A.-R.: Coin-based anonymous fingerprinting. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 150–164. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  23. 23.
    Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  24. 24.
    Pfitzmann, B., Schunter, M.: Asymmetric fingerprinting. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 84–95. Springer, Heidelberg (1996) Google Scholar
  25. 25.
    Pfitzmann, B., Waidner, M.: Anonymous fingerprinting. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 88–102. Springer, Heidelberg (1997) Google Scholar
  26. 26.
    Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In: Proceedings of the 4-th ACM conference on Computer and Communications Security (ACM CCS 1997), pp. 151–160. ACM Press (1997)Google Scholar
  27. 27.
    Rabin, M.: How to exchange secrets with oblivious transfer. Harvard University Technical Report and IACR Eprint archive, report 187/2005 (1981). http://eprint.iacr.org/2005/187
  28. 28.
    Rial, A., Deng, M., Bianchi, T., Piva, A., Preneel, B.: A provably secure anonymous buyer-seller watermarking protocol. IEEE Trans. Inf. Forensics Secur. 5, 920–9310 (2010). IEEECrossRefGoogle Scholar
  29. 29.
    Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998) Google Scholar
  30. 30.
    Tardos, G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35-th ACM Symposium on Theory of Computing (STOC 2003), pp. 116–125. ACM Press (2003)Google Scholar
  31. 31.
    Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) Advances in Cryptology–ASIACRYPT 2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  32. 32.
    Škorić, B., Katzenbeisser, S., Celik, M.: Symmetric tardos fingerprinting codes for arbitrary alphabet sizes. Des. Codes Crypt. 46, 137–166 (2008). Springer-VerlagCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Caroline Fontaine
    • 1
    • 2
  • Sébastien Gambs
    • 3
    • 4
  • Julien Lolive
    • 1
    • 4
    Email author
  • Cristina Onete
    • 3
  1. 1.UMR CNRS 6285 Lab-STICCInstitut TELECOM, TELECOM BretagnePlouzanéFrance
  2. 2.UMR 6285 Lab-STICCCNRSPlouzanéFrance
  3. 3.Université de Rennes 1RennesFrance
  4. 4.Inria Rennes Bretagne-Atlantique / IRISARennesFrance

Personalised recommendations