Optimising LTE Uplink Scheduling by Solving the Multidimensional Assignment Problem

  • Raphael ElsnerEmail author
  • Maciej Mühleisen
  • Andreas Timm-Giel
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 141)


Inter-cell interference mitigation in LTE networks is important to improve the system throughput. Upcoming Cloud Radio Access Networks (C-RANs) allow controlling multiple cells at a single location enabling novel inter-cell coordination algorithms. Coordinated recourse allocation can be used to achieve optimal spectral efficiency through reduced inter-cell interference.

In this paper the uplink resource allocation is optimised by deciding which user terminals served by different base stations should transmit on the same resources. A central meta-scheduler situated in the cloud is responsible for the optimisation. The optimisation is performed using heuristic algorithms to solve the underlying multidimensional assignment problem. The complexity is further reduced to a feasible size by only coordinating a subset of base stations. This way the problem can be solved for real world cellular deployments.

The performance for different groupings of cooperatively managed base stations is investigated. Results show that coordinating resource assignment of multiple base stations improves the cell spectral efficiency in general and coordinating three sectors at the same site outperforms coordinating three base stations of different sites.


LTE Radio resource management Inter-cell interference coordination Base station grouping Interference mitigation Linear assignment problem Multidimensional assignment problem IMT-Advanced C-RAN 


  1. 1.
    3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; LTE Physical layer; General description, Technical report 3GPP 36.201 (2009)Google Scholar
  2. 2.
    Rost, P., Bernardos, C.J., De Domenico, A., Di Girolamo, M., Lalam, M., Maeder, A., Sabella, D., Wübben, D.: Cloud technologies for flexible 5G radio access networks. IEEE Commun. Mag. 52(5), 68–76 (2014)CrossRefGoogle Scholar
  3. 3.
    Mühleisen, M., Henzel, K., Timm-Giel, A.: Design and evaluation of scheduling algorithms for LTE femtocells. In: ITG Fachbericht Mobilkommunikation 2013, Osnabrück (2013)Google Scholar
  4. 4.
    Girici, T., Zhu, C., Agre, J.R., Ephremides, A.: Proportional fair scheduling algorithm in OFDMA-based wireless systems with QoS constraints. J. Commun. Netw. 12(1), 30–42 (2010)CrossRefGoogle Scholar
  5. 5.
    Hamza, A.S., Khalifa, S.S., Hamza, H.S., Elsayed, K.: A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Commun. Surv. Tutorials 15(4), 1642–1670 (2013)CrossRefGoogle Scholar
  6. 6.
    Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., Vrzic, S.: Interference coordination and cancellation for 4G networks. IEEE Commun. Mag. 47(4), 74–81 (2009)CrossRefGoogle Scholar
  7. 7.
    Kwan, R., Leung, C.: A survey of scheduling and interference mitigation in LTE. J. Electr. Comput. Eng. 2010, 10 (2010). Hindawi Publishing Corporation, New YorkGoogle Scholar
  8. 8.
    Shi, Z., Luo, Y., Huang, L., Gu, D.: User fairness-empowered power coordination in OFDMA downlink. In: 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, pp. 1–5 (2011)Google Scholar
  9. 9.
    Guo, W., Wang, X., Li, J., Wang, L.: Dynamic fair scheduling for inter-cell interference coordination in 4G cellular networks. In: 2nd IEEE/CIC International Conference on Communications in China (ICCC), Xi’an, pp. 84–88 (2013)Google Scholar
  10. 10.
    Liang, Y.-S., Chung, W.-H., Yu, C.-M., Zhang, H., Chung, C.-H., Ho, C.-H., Kuo, S.-Y.: Resource block assignment for interference avoidance in femtocell networks. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), Quebec City, pp. 1–5 (2012)Google Scholar
  11. 11.
    Zulhasnine, M., Changcheng H., Srinivasan, A.: Efficient resource allocation for device-to-device communication underlaying LTE network. In: IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Niagara Falls, pp. 368–375 (2010)Google Scholar
  12. 12.
    Tabassum, H., Dawy, Z., Alouini, M.-S.: Sum rate maximization in the uplink of multi-cell OFDMA networks. In: 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, pp. 1152–1157 (2011)Google Scholar
  13. 13.
    Garcia Luna, J. A., Mühleisen, M., Henzel, K.: Performance of a heuristic uplink radio resource assignment algorithm for LTE-advanced. In: ITG Fachbericht Mobilkommunikation 2011, Osnabrück (2011)Google Scholar
  14. 14.
    ITU, ITU-R M.2135 Guidelines for evaluating of radio interface technologies for IMT-Advanced, Technical report (2009)Google Scholar
  15. 15.
    3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; Physical channels and modulation, Technical Report 3GPP 36.211 (2009)Google Scholar
  16. 16.
    Pierskalla, W.P.: Letter to the editor - the multidimensional assignment problem. Oper. Res. 16(2), 422–431 (1968)CrossRefzbMATHGoogle Scholar
  17. 17.
    Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem. Oper. Res. 39(1), 150–161 (1991)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015

Authors and Affiliations

  • Raphael Elsner
    • 1
    Email author
  • Maciej Mühleisen
    • 1
  • Andreas Timm-Giel
    • 1
  1. 1.Institute of Communication Networks, Hamburg University of TechnologyHamburgGermany

Personalised recommendations