Advertisement

Applying Organizational Semiotics for Developing Knowledge-Based Cost Estimation of Construction Project

  • Shen Xu
  • Kecheng Liu
  • Llewellyn CM Tang
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 449)

Abstract

Cost estimation is a dynamic and knowledge intensive process. Current practice of construction cost estimation is a process with fragmented knowledge. In order to have an integrated process, semantic should be modelled in respect to pragmatic. The investigation of BIM-based cost estimation confirmed that IFC can provide construction project semantics but incapable of relating domain semantics and pragmatics. In order to overcome this gap, we adopt organizational semiotics to fully reveal semantic units of cost estimation from a process perspective. Pilot study confirms feasibility of this approach. Future research will be a case study to collect all the instances for semantic units. Then semantic consistency and pragmatic implementation should be realized by the applications. This research highlights the importance of alignment between semantic (domain ontology) and pragmatic (meaning in use), it contributes also to identify a new approach of knowledge engineering for construction professional services under BIM environment.

Keywords

analytical cost estimation knowledge representation information system development industry foundation classes quantity surveying 

References

  1. 1.
    Autodesk. Skidmore, Owings & Merrill Standardizes Freedom Tower Project on Autodesk Revit Platform, http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5523957&linkID=14271593 (accessed July 29, 2011)
  2. 2.
    Bentley Review and Study of the Opera Theater Interior and New Works, Sydney Opera House (2012)Google Scholar
  3. 3.
    Graphisoft World’s Tallest Residential Tower Designed with 3D Virtual Building Concept, http://www.graphisoft.com/community/press_zone/eureka.html (accessed July 30, 2011)
  4. 4.
    Kiziltas, S., Akinci, B.: Contextual information requirements of cost estimators from past construction projects. J. Constr. Eng. Manag., 841–852 (2009)Google Scholar
  5. 5.
    Ashworth, A., Hogg, K.: Willis’s Practice and Procedure for the Quantity Surveyor, 12th edn., p. 440. Wiley-Blackwell (2007)Google Scholar
  6. 6.
    Staub, F.S., Fischer, M.: Practical and research issues in using Industry Foundation Classes for construction cost estimating, CIFE Working Paper (2000)Google Scholar
  7. 7.
    El-Diraby, T., Lima, C., Feis, B.: Domain taxonomy for construction concepts: toward a formal ontology for construction knowledge. J. Comput. Civ. …, 394–406 (2005)Google Scholar
  8. 8.
    Akintoye, A., Fitzgerald, E.: A survey of current cost estimating practices in the UK. Constr. Manag. Econ. 18, 161–172 (2000)CrossRefGoogle Scholar
  9. 9.
    Hartmann, T.: A Semiotic Analysis of Building Information Model Systems. Comput. Civ. Eng., 381–388 (2012)Google Scholar
  10. 10.
    Andersen, P.: A theory of computer semiotics: Semiotic approaches to construction and assessment of computer systems, 555–562 (1997)Google Scholar
  11. 11.
    Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  12. 12.
    Eccles, R.G.: The quasifirm in the construction industry. J. Econ. Behav. Organ. 2, 335–357 (1981), 1981Google Scholar
  13. 13.
    Cui, G., Liu, K.: Infrastructural Analysis for Enterprise Information Systems Implementation. In: Lytras, M.D., et al. (eds.) WSKS 2009. LNCS, vol. 5736, pp. 356–365. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Eastman, C.M.: Building Product Models: Computer Environments, Supporting Design and Construction; Taylor & Francis (1999)Google Scholar
  15. 15.
    Vanlande, R., Nicolle, C., Cruz, C.: IFC and building lifecycle management. Autom. Constr., 1–19 (2008)Google Scholar
  16. 16.
    Sage Sage Estimating, http://na.sage.com/us/sage-construction-and-real-estate/sage-estimating (accessed April 22, 2014)
  17. 17.
    Innovaya Innovaya Visual Estimating, http://www.innovaya.com/prod_ve.htm (accessed April 22, 2014)
  18. 18.
    Exactal CostX® | Exactal CostX : Construction Estimating Software | On-screen Takeoff Software, http://www.exactal.co.uk/products/costX (accessed November 4, 2013)
  19. 19.
    Nomitech Nomitech Construction Oil & Gas BIM Cost Estimating Software, Estimating Services | Home, http://www.nomitech.eu/cms/en/c/index.html (accessed November 4, 2013)
  20. 20.
    Harty, C., Throssell, D., Jeffrey, H., Stagg, M.: Implementing building information modelling: a case study of the Barts and the London hospitals. In: International Conference on Computing in Civil and Building Engineering. Nottingham University Press (2010)Google Scholar
  21. 21.
    Matipa, W.M., Kelliher, D., Keane, M.: How a quantity surveyor can ease cost management at the design stage using a building product model. Constr. Innov. Information, Process. Manag. 8, 164–181 (2008)CrossRefGoogle Scholar
  22. 22.
    Gee, C.: The Influence of Building Information Modelling on the Quantity Surveying Profession. University of Pretoria (2010)Google Scholar
  23. 23.
    Xu, S., Tang, L.C.M.: High value information in quantity surveying organizations. In: International Conference on Construction and Real Estate Management (ICCREM 2011), Guangzhou, China, November 18-19 (2011)Google Scholar
  24. 24.
    Xu, S., Liu, K., Tang, L.C.M.: Cost Estimation in Building Information Model. In: International Conference on Construction and Real Estate Management (ICCREM 2013) (2013)Google Scholar
  25. 25.
    Sabol, L.: Challenges in cost estimating with Building Information Modeling. IFMA World Work (2008)Google Scholar
  26. 26.
    Olatunji, O., Sher, W., Gu, N.: Building Information Modeling and Quantity surveying Practice. Emirates J. Eng. Res. 15, 67–70 (2010)Google Scholar
  27. 27.
    Xu, S., Tang, L.C.M.: BIM Environment : Quantity Surveyor ’s Information Lifecycle. In: The Innovation and the Built Environment Academy (2011)Google Scholar
  28. 28.
    The Royal Institution of Chartered Surveyors. RICS New Rules of MEASUREMENT Bill of Quantities for Works Procurement, Coventry, pp. 1–231 (2011) Google Scholar
  29. 29.
    AACE, Association for the Advancement of Cost Engineering (AACE) International Recommended Practice No. 25R-03 (2004) Google Scholar
  30. 30.
    Ma, Z., Wei, Z.: Framework for Automatic Construction Cost Estimation Based on BIM and Ontology Technology. In: Proceedings of the CIB W78, Beirut, Lebanon, pp. 17–19 (2012)Google Scholar
  31. 31.
    Open Geospatial Consortium Inc.; buildingSMART alliance Draft QTO Information Delivery Manual (2009)Google Scholar
  32. 32.
    Ma, Z., Wei, Z., Zhang, X.: Semi-automatic and specification-compliant cost estimation for tendering of building projects based on IFC data of design model. Autom. Constr. 30, 126–135 (2013)CrossRefGoogle Scholar
  33. 33.
    Lee, S.-K., Kim, K.-R., Yu, J.-H.: BIM and ontology-based approach for building cost estimation. Autom. Constr. 41, 96–105 (2014)CrossRefGoogle Scholar
  34. 34.
    Abanda, H., Tah, J.H.M., Manjia, M., Pettang, C., Abanda, F.: An ontology-driven house-building labour cost estimation in Cameroon. J. Inf. Technol. Constr. 16, 617–634 (2011)Google Scholar
  35. 35.
    Staub-French, S., Fischer, M., Kunz, J.I.K., Paulson, B.: A feature ontology to support construction cost estimating. Artif. Intell. Eng. Des. Anal. Manuf. 17, 133–154 (2003)CrossRefGoogle Scholar
  36. 36.
    Tan, F., Makwasha, T.: “ Best practice ” cost estimation in land transport infrastructure projects, pp. 1–15 (2010)Google Scholar
  37. 37.
    Sinclair, N., Artin, P., Mulford, S.: Construction cost data workbook. In: Conference on the International Comparison Program. World Bank, Washington, D.C (2002)Google Scholar
  38. 38.
    Rush, C., Roy, R.: Expert Judgement in Cost Estimating: Modelling the Reasoning Process. Concurr. Eng. 9, 271–284 (2001)CrossRefGoogle Scholar
  39. 39.
    Tan, S., Liu, K., Xie, Z.: A Semiotic approach to organisational modelling using norm analysis. In: 6th Int. Conf. Enterp. Inf. …, pp. 1–15 (2004)Google Scholar
  40. 40.
    Grzybek, H., Gulliver, S., Huang, Z.: Inclusion of Temporal Databases with Industry Foundation Classes-A Basis for Adaptable Intelligent Buildings. In: ICISO (2010)Google Scholar
  41. 41.
    Nicolle, C., Cruz, C.: Semantic Building Information Model and multimedia for facility management. Web Inf. Syst. Technol. 1, 14–29 (2011)CrossRefGoogle Scholar
  42. 42.
    Steel, J., Drogemuller, R., Toth, B.: Model interoperability in building information modelling. Softw. Syst. Model. 11, 99–109 (2010)CrossRefGoogle Scholar
  43. 43.
    Shen, Z.: Semantic 3D CAD and Its Applications in Construction Industry — An Outlook of Construction Data Visualization (2007)Google Scholar
  44. 44.
    Venugopal, M.: Formal specification of industry foundation class concepts using engineering ontologies, p. 241Google Scholar
  45. 45.
    Venugopal, M., Eastman, C., Teizer, J.: Formal Specification of the IFC Concept Structure for Precast Model Exchanges. Comput. Civ. Eng., 213–220 (2012)Google Scholar
  46. 46.
    The Royal Institution of Chartered Surveyors. RICS New Rules of Measurement - Order of Cost Estimating and Elemental Cost Planning; Coventry (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Shen Xu
    • 1
  • Kecheng Liu
    • 1
  • Llewellyn CM Tang
    • 2
  1. 1.Informatics Research Centre, Henley Business SchoolUniversity of ReadingReadingUK
  2. 2.Department of Architecture and Built EnvironmentUniversity of Nottingham NingboChina

Personalised recommendations