Analysis of Music Tagging and Listening Patterns: Do Tags Really Function as Retrieval Aids?

  • Jared LorinceEmail author
  • Kenneth Joseph
  • Peter M. Todd
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9021)


In collaborative tagging systems, it is generally assumed that users assign tags to facilitate retrieval of content at a later time. There is, however, little behavioral evidence that tags actually serve this purpose. Using a large-scale dataset from the social music website, we explore how patterns of music tagging and subsequent listening interact to determine if there exist measurable signals of tags functioning as retrieval aids. Specifically, we describe our methods for testing if the assignment of a tag tends to lead to an increase in listening behavior. Results suggest that tagging, on average, leads to only very small increases in listening rates, and overall the data do not support the assumption that tags generally serve as retrieval aids.


Collaborative tagging Folksonomy Music listening Memory cues Retrieval aids Personal information management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 971–980. ACM (2007)Google Scholar
  2. 2.
    Cattuto, C., Loreto, V., Pietronero, L.: Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences 104(5), 1461–1464 (2007)CrossRefGoogle Scholar
  3. 3.
    Glushko, R.J., Maglio, P.P., Matlock, T., Barsalou, L.W.: Categorization in the wild. Trends in Cognitive Sciences 12(4), 129–135 (2008)CrossRefGoogle Scholar
  4. 4.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  5. 5.
    Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. ACM SIGKDD Explorations Newsletter 12(1), 58–72 (2010)CrossRefGoogle Scholar
  6. 6.
    Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tagging. In: Proceedings of the 16th International Conference on World Wide Web, pp. 211–220. ACM (2007)Google Scholar
  7. 7.
    Hastie, T.J., Tibshirani, R.J.: Generalized additive models (1990)Google Scholar
  8. 8.
    Heckner, M., Heilemann, M., Wolff, C.: Personal information management vs. resource sharing: towards a model of information behavior in social tagging systems. In: ICWSM (2009)Google Scholar
  9. 9.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Körner, C., Kern, R., Grahsl, H.P., Strohmaier, M.: Of categorizers and describers: an evaluation of quantitative measures for tagging motivation. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, pp. 157–166. ACM (2010)Google Scholar
  11. 11.
    Lorince, J., Todd, P.M.: Can simple social copying heuristics explain tag popularity in a collaborative tagging system? In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 215–224. ACM (2013)Google Scholar
  12. 12.
    Lorince, J., Zorowitz, S., Murdock, J., Todd, P.M.: “Supertagger” behavior in building folksonomies. In: Proceedings of the 6th Annual ACM Web Science Conference, pp. 129–138. ACM (2014)Google Scholar
  13. 13.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT 2006, tagging paper, taxonomy, flickr, academic article, to read. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, pp. 31–40. ACM (2006)Google Scholar
  14. 14.
    Vander Wal, T.: Explaining and Showing Broad and Narrow Folksonomies (2005).
  15. 15.
    Vander Wal, T.: Folksonomy Coinage and Definition (2007).
  16. 16.
    Wood, S.N.: mgcv: GAMs and generalized ridge regression for R. R News 1(2), 20–25 (2001)Google Scholar
  17. 17.
    Yeung, C.M.A., Noll, M.G., Gibbins, N., Meinel, C., Shadbolt, N.: SPEAR: Spamming-Resistant Expertise Analysis and Ranking in Collaborative Tagging Systems. Computational Intelligence 27(3), 458–488 (2011)Google Scholar
  18. 18.
    Zollers, A.: Emerging motivations for tagging: expression, performance, and activism. In: Workshop on Tagging and Metadata for Social Information Organization, held at the 16th International World Wide Web Conference (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cognitive Science ProgramIndiana UniversityBloomingtonUSA
  2. 2.Computation, Organization, and Society ProgramCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations