On Conjectures in t-Norm Based Fuzzy Logics

  • Francesc EstevaEmail author
  • Itziar García-Honrado
  • Lluís Godo
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 322)


This paper is a humble homage to Enric Trillas. Following his foundational contributions on models of ordinary reasoning in an algebraic setting, we study here elements of these models, like conjectures and hypothesis, in the logical framework of continuous t-norm based fuzzy logics. We consider notions of consistency, conjecture and hypothesis arising from two natural families of consequence operators definable in these logics, namely the ones corresponding to the so-called truth-preserving and degree-preserving consequence relations. We pay special attention to the particular cases of three prominent fuzzy logics: Gödel, Product and Łukasiewicz logics


CHC models Consequence operators t-norm based fuzzy logics Consistency Conjectures 



This work has been partially supported by the Spanish projects TIN2012-39348-C02-01 (Esteva and Godo) and TIN2011-29827-C02-01 (García-Honrado).


  1. 1.
    Castiñeira, E., Trillas, E., Cubillo, S.: On conjectures in orthocomplemented lattices. Artif. Intell. 117, 255–275 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    García-Honrado, I., Trillas, E.: On an attempt to formalize guessing. In: Seising, R., Sanz, V. (eds.) Soft Computing in Humanities and Social Sciences, vol. 273, pp. 237–255. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Trillas, E., García-Honrado, I., Pradera, A.: Consequences and conjectures in preordered sets. Inf. Sci. 180(19), 3573–3588 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Watanabe, S.: Knowing and guessing. A Quantitative Study of Inference and Information. Wiley, New York (1969)zbMATHGoogle Scholar
  5. 5.
    Qiu, D.: A note on Trillas’ CHC models. Artif. Intell. 171, 239–254 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ying, M., Wang, H.: Lattice-theoretic models of conjectures, hypotheses and consequences. Artif. Intell. 139, 253–267 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cintula, P., Hájek, P., Noguera, C.: Handbook of Mathematical Fuzzy Logic (in 2 volumes). of Studies in Logic, Mathematical Logic and Foundations, vols. 37–38 College Publications, London (2011)Google Scholar
  8. 8.
    Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  9. 9.
    Bou, F., Esteva, F., Font, J.M., Gil, A., Godo, L., Torrens, A., Verdú, V.: Logics preserving degrees of truth from varieties of residuated lattices. J. Log. Comput. 19(6), 1031–1069 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Esteva, F., Godo, L., Hájek, P., Navara, M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Log. 39(2), 103–124 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    Esteva, F., Godo, L., Montagna, F.: Equational characterization of the subvarieties of BL generated by t-norm algebras. Stud. Log. 76, 161–200 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput. 4(2), 106–112 (2000)Google Scholar
  13. 13.
    Ertola, R., Esteva, F., Flaminio, T., Godo, L., Noguera, C.: Paraconsistency properties in degree-preserving fuzzy logics. Soft Comput. J. 19(3), 531–546 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francesc Esteva
    • 1
    Email author
  • Itziar García-Honrado
    • 2
  • Lluís Godo
    • 1
  1. 1.Artificial Intelligence Research Institute (IIIA-CSIC)BellaterraSpain
  2. 2.Department of Statistics, Operational Research and Mathematical EducationUniversity of OviedoOviedoSpain

Personalised recommendations