Advertisement

Globally Monotone Extended Aggregation Functions

  • Tomasa Calvo
  • Gaspar MayorEmail author
  • Jaume Suñer
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 322)

Abstract

In this paper a condition of global monotonicity for the class of extended aggregation functions is presented. From the study of some remarkable families of those aggregation functions and of several properties considered in the literature as indicators of consistency, it seems reasonable that the global monotonicity can be taken as a minimum requirement for an extended aggregation function to be considered consistent.

Keywords

Aggregation Aggregation function Consistency Stability Extended aggregation function Idempotency Extended monotonicity Weighting triangle Extended weighted arithmetic mean Extended ordered weighted arithmetic mean 

Notes

Acknowledgments

The authors have written this contribution in tribute to Prof. Enric Trillas in recognition of his important and extensive research in the field of fuzzy logic. This paper has been partially supported by the Spanish Grant TIN2013-42795-P and TIN2012-32482.

References

  1. 1.
    Beliakov, G., Pradera, A., Calvo, T.: In: Beliakov, G., Pradera, A., Calvo, T. (eds.) Aggregation Functions A Guide for Practitioners. Springer, New York (2007)Google Scholar
  2. 2.
    Calvo, T.: Two ways of generating extended aggregation functions. In: Proceedings of the IPMU’98, Paris, pp. 825–831 (1998)Google Scholar
  3. 3.
    Calvo, T., Mayor, G.: Remarks on two types of extended aggregation functions. Tatra Mt. Math. Publ. 16–1, 235–255 (1999)MathSciNetGoogle Scholar
  4. 4.
    Calvo, T., Carbonell, M., Canet, P.: Medias Casilineales Ponderadas Extendidas. In: Proceedings of the Estylf’97, Tarragona, pp. 33–38 (1997)Google Scholar
  5. 5.
    Calvo, T., Mayor, G., Torrens, J., Suñer, J., Mas, M., Carbonell, M.: Generation of weighting triangles associated with aggregation functions. Int. J. Uncertain., Fuzziness Knowl.-Based Syst. 8(4), 417–452 (2000)CrossRefzbMATHGoogle Scholar
  6. 6.
    Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators, New Trends and Applications. Physica-Verlag, Heidelberg (2002)Google Scholar
  7. 7.
    Carbonell, M., Mas, M., Mayor, G.: On a class of Monotonic multidimensional OWA operators. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona, pp. 1695–1700 (1997)Google Scholar
  8. 8.
    Cutello, V., Molina, E., Montero, J.: Associativeness versus recursiveness. In: Proceedings of the 26th IEEE International Symposium on Multiple-valued Logic, Santiago de Compostela, Spain, pp. 154–159 (1996)Google Scholar
  9. 9.
    Dennenberg, D.: Non-additive Measure and Integral. Kluwer, Dordrecht (1994)Google Scholar
  10. 10.
    Fodor, J.: An extension of Fung-Fu’s theorem. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 4(3), 235–243 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Godo, L., Torra, V.: Extending Choquet integrals for aggregation of ordinal values. In: Proceedings of the IPMU’2000, pp. 410–417 (2000)Google Scholar
  12. 12.
    Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mas, M., Mayor, G., Suñer, J., Torrens, J.: Generación de funciones de Agregación Extendidas. In: Proceedings of the Estylf’97, Tarragona, pp. 39–44 (1997)Google Scholar
  14. 14.
    Mayor, G., Calvo, T.: On extended aggregation functions. In: Proceedings of the Seventh IFSA Congress, Prague, vol. 1. pp. 281–285 (1997)Google Scholar
  15. 15.
    Mayor, G., Torrens, J.: On a class of operators for expert systems. Int. J. Intell. Syst. 8, 771–778 (1988)CrossRefGoogle Scholar
  16. 16.
    Mesiar, R.: Choquet-like integrals. J. Math. Anal. Appl. 194, 477–488 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Pursiainen, H.: Consistency in aggregation, quasilinear means and index numbers. Discussion paper No. 244, University of Helsinki and HECER (Helsinki Center of Economic Research) (2008)Google Scholar
  18. 18.
    Rojas, K., Gómez, D., Montero, J., Tinguaro, J.: Strictly stable families of aggregation operators. Fuzzy Sets Syst. 228, 44–63 (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, New York (1983)zbMATHGoogle Scholar
  20. 20.
    Suñer, J.: Funcions d’Agregació Multidimensionals. Ph.D. (in Catalan) (2002)Google Scholar
  21. 21.
    Torra, V., Narukawa, Y.: Modeling Decisions Information Fusion and Aggregation Operators. Springer, New York (2007)Google Scholar
  22. 22.
    Yager, R.R.: On ordered weighted averaging operators in multicriteria decisionmaking. IEEE Trans. Syst., Man Cybern. 18, 183–190 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Yager, R.R., Rybalov, A.: Noncommutative self-identity aggregation. Fuzzy Sets Syst. 85, 73–82 (1997)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of AlcaláAlcalá de HenaresSpain
  2. 2.University of Balearic IslandsPalma de MallorcaSpain

Personalised recommendations