Computing with Words for Decision Making Versus Linguistic Decision Making: A Reflection on both Scenarios

  • Francisco Herrera
  • Enrique Herrera-Viedma
  • Luis Martínez
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 322)


Computing with Words (CW) methodology has been used in different environments to narrow the differences between human reasoning and computing. As decision making is a typical human mental process, it seems natural to apply the CW methodology in order to create and enrich decision models in which the information involved has a qualitative nature. There are two approaches to manage linguistic information in decision making. The first one uses a CW methodology that allows experts to elicit linguistic evaluations and obtains final results as a linguistic representation of words enriched by any kind of representation. The other one uses linguistic information as inputs together with computing processes whose outcome is a ranking of alternatives based on numerical outputs. We can summarize both approaches in the two following expressions from words to words versus from words to numerical outputs/ranking. Both scenarios will be revisited in this chapter within the context of the linguistic computational models for processing linguistic information in decision making.


Computing with words Decision making Linguistic information 



We wish these final words serve to thank Enric Trillas for their invaluable presence in our lives as researchers in these 25 years that the authors have developed their career. Without their advice, support, encouragement ... we had not gotten to reach achievements.


  1. 1.
    Agell, N., Sánchez, M., Prats, F., Roselló, Ll: Ranking multi-attribute alternatives on the base of linguistic labels in group decisions. Inf. Sci. 209, 49–60 (2012)CrossRefGoogle Scholar
  2. 2.
    Degani, R., Bortolan, G.: The problem of linguistic approximation in clinical decision making. Int. J. Approx. Reason. 2, 143–162 (1988)CrossRefGoogle Scholar
  3. 3.
    Delgado, M., Verdegay, J.L., Vila, M.A.: On aggregation operations of linguistic labels. Int. J. Intell. Syst. 8(3), 351–370 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dong, Y., Xu, Y., Yu, S.: Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans. Fuzzy Syst. 17(6), 1366–1378 (2009)CrossRefGoogle Scholar
  5. 5.
    Dong, Y., Zhang, G., Hong, W.-C., Yu, S.: Linguistic computational model based on 2-tuples and intervals. IEEE Trans. Fuzzy Syst. 21(6), 1006–1018Google Scholar
  6. 6.
    Estrella, F.J., Espinilla, M., Herrera, F., Martínez, L.: FLINTSTONES: a fuzzy linguistic decision tools enhancement suite based on the 2-tuple linguistic model and extensions. Inf. Sci. 280, 152–170 (2014)CrossRefGoogle Scholar
  7. 7.
    Evangelos, T.: Multi-criteria Decision Making Methods: A Comparative Study. Kluwer, Dordrecht (2000)Google Scholar
  8. 8.
    Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 115, 67–82 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Falcó, E., García Lapresta, J.L., Roselló, L.L.: Allowing agents to be imprecise: a proposal using multiple linguistic terms. Inf. Sci. 258, 249–265 (2014)CrossRefGoogle Scholar
  10. 10.
    Herrera, F., Alonso, S., Chiclana, F., Herrera-Viedma, E.: Computing with words in decision making: foundations, trends and prospects. Fuzzy Optim. Decis. Mak. 8, 337–364 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Herrera, F., Herrera-Viedma, E., Martínez, L.: A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Trans. Fuzzy Syst. 16(2), 354–370 (2008)CrossRefGoogle Scholar
  12. 12.
    Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic context in multi-expert decision making. IEEE Trans. Syst., Man, Cybern.—Part B: Cybern. 31(2), 227–234 (2001)CrossRefGoogle Scholar
  13. 13.
    Herrera, F., Martíınez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 8(6), 746–752 (2000)CrossRefGoogle Scholar
  14. 14.
    Kazemzadeh, A., Sungbok, L., Narayanan, S.: Fuzzy logic models for the meaning of emotion words. IEEE Comput. Intell. Mag. 8(2), 34–49 (2013)CrossRefGoogle Scholar
  15. 15.
    Lawry, J.: An alternative approach to computing with words. Int. J. Uncertain. Fuzziness Knowl. -Based Syst. 9(Suppl), 3–16 (2001)Google Scholar
  16. 16.
    Lawry, J.: A methodology for computing with words. Int. J. Approx. Reason. 28, 51–89 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Lawry, J.: A framework for linguistic modelling. Artif. Intell. 155(1–2), 1–39 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Martin, O., Klir, G.J.: On the problem of retranslation in computing with perceptions. Int. J. Gen. Syst. 35(6), 655–674 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Martínez, L., Herrera, F.: An overview on the 2-tuple linguistic model for computing with words in decision making: extensions, applications and challenges. Inf. Sci. 207(1), 1–18 (2012)CrossRefGoogle Scholar
  20. 20.
    Martínez, L., Ruan, D., Herrera, F.: Computing with words in decision support systems: an overview on models and applications. Int. J. Comput. Intell. Syst. 3(4), 382–395 (2010)CrossRefGoogle Scholar
  21. 21.
    Massanet, S., Riera, J.V., Torrens, J., Herrera-Viedma, E.: A new linguistic computational model based on discrete fuzzy numbers for computing with words. Inf. Sci. 258, 277–290 (2014)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Mendel, J.M.: An architecture for making judgement using computing with words. Int. J. Appl. Math. Comput. Sci. 12(3), 325–335 (2002)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Mendel, J.: Historical reflections and new positions on perceptual computing. Fuzzy Optim. Decis. Mak. 8(4), 325–335 (2009)CrossRefGoogle Scholar
  24. 24.
    Mendel, J., Zadeh, L.A., Trillas, E., Yager, R., Lawry, J., Hagras, H., Guadarrama, S.: What computing with words means to me. IEEE Comput. Intell. Mag. 5(1), 20–26 (2010)CrossRefGoogle Scholar
  25. 25.
    Nguyen, C.-H., Huynh, V.N., Pedrcyz, W.: A construction of sound semantic linguistic scale using 4-tuple representation of term semantics. Int. J. Approx. Reason. 55, 763–786 (2014)CrossRefGoogle Scholar
  26. 26.
    Novák, V.: On modelling with words. Int. J. Gen. Syst. 42(1), 21–40 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Rodríguez, R.M., Martínez, L.: An analysis of symbolic linguistic computing models in decision making. Int. J. Gen. Syst. 42(1), 121–136 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)CrossRefGoogle Scholar
  29. 29.
    Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90, 199–206 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Rubin, S.H.: Computing with words. IEEE Trans. Syst., Man, Cybern. Part B: Cybern. 29(4), 518–524 (1999)CrossRefGoogle Scholar
  31. 31.
    Tong, R., Bonissone, P.: A linguistic approach to decision making with fuzzy sets. IEEE Trans. Syst., Man, Cybern. SMC-10(11), 716–723 (1980)Google Scholar
  32. 32.
    Trillas, E.: On the use of words and fuzzy sets. Inf. Sci. 176(11), 1463–1487 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Trillas, E., Guadarrama, S.: What about fuzzy logic’s linguistic soundness? Fuzzy Sets Syst. 156(3), 334–340 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Wang, J.H., Hao, J.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)CrossRefGoogle Scholar
  35. 35.
    Wang, J.-H., Hao, J.: An approach to computing with words based on canonical characteristic values of linguistic labels. IEEE Trans. Fuzzy Syst. 15(4), 593–604 (2007)CrossRefGoogle Scholar
  36. 36.
    Wang, H., Qiu, D.: Computing with words via turing machines: a formal approach. IEEE Trans. Fuzzy Syst. 11(6), 742–753 (2003)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Wu, D., Mendel, J.M.: Aggregation using the linguistic weighted average and interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 15(6), 1145–1161 (2007)CrossRefGoogle Scholar
  38. 38.
    Wu, D.: A reconstruction decoder for computing with words. Inf. Sci. 255, 1–15 (2014)CrossRefGoogle Scholar
  39. 39.
    Yager, R.R.: A new methodology for ordinal multiobjective decisions based on fuzzy sets. Decis. Sci. 12(4), 589–600 (1981)CrossRefGoogle Scholar
  40. 40.
    Yager, R.R.: Non-numeric multi-criteria multi-person decision making. Group Decis. Negot. 2(1), 81–93 (1993)CrossRefGoogle Scholar
  41. 41.
    Yager, R.R.: On the retranslation process in Zadeh’s paradigm of computing with words. IEEE Trans. Syst., Man, Cybern.—Part B: Cybern. 34(2), 1184–1195 (2004)CrossRefGoogle Scholar
  42. 42.
    Yager, R.R.: Aggregation of ordinal information. Fuzzy Optim. Decis. Mak. 6(3), 199–219 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Yang, Y.-E., Wang, X.-F., Wang, J.-Q.: Counted linguistic variable in decision-making. Int. J. Fuzzy Syst. 16(2), 196–203 (2014)Google Scholar
  44. 44.
    Ying, M.: A formal model of computing with words. IEEE Trans. Fuzzy Syst. 10(5), 640–652 (2002)CrossRefGoogle Scholar
  45. 45.
    Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)CrossRefzbMATHGoogle Scholar
  46. 46.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part I. Inf. Sci. 8(3), 199–249 (1975). Part II. Inf. Sci. 8(4), 301–357 (1975). Part III. Inf. Sci. 9(1), 43–80 (1975)Google Scholar
  47. 47.
    Zadeh, L.A.: Fuzzy logic \(=\) computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)CrossRefGoogle Scholar
  48. 48.
    Zadeh, L.A.: From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits Syst. I 46(1), 105–119 (1999)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Francisco Herrera
    • 1
  • Enrique Herrera-Viedma
    • 1
  • Luis Martínez
    • 2
  1. 1.Department of Computer Sciences and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Department of Computer SciencesUniversity of JaénJaenSpain

Personalised recommendations