Towards Pervasive Mobility Assessments in Clinical and Domestic Environments

  • Melvin Isken
  • Thomas Frenken
  • Melina Frenken
  • Andreas Hein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8700)


This paper provides an overview of current research and open problems in sensor-based mobility analysis. It is focused on geriatric assessment tests and the idea to provide easier and more objective results by using sensor technologies. A lot of research has been done in the field of measuring personal movement/mobility by technical approaches but there are few developments to measure a complete geriatric assessment test. Such automated tests can very likely offer more accurate, reliable and objective results than currently used methods. Additionally, those tests may reduce costs in public health systems as well as set standards for comparability of the tests. New sensor technologies and initiatives for data standardization in health processes offer increased possibilities in system development. This paper will highlight some open problems that still exist to bring automated mobility assessment tests into pervasive clinical and domestic use.


Assessment Geriatrics Clinical Domestic Body-worn Ambient Sensor Technology 


  1. 1.
    Abellanas, A., Calderón Estévez, L., Ceres Ruíz, R., Frizera Neto, A., Raya, R.: Ultrasonic time of flight estimation in assistive mobility: improvement of the model-echo fitting. In: Proceedings of Eurosensors XXII, pp. 464–467. VDI/VDE, Elsevier (2008)Google Scholar
  2. 2.
    Alwan, M., Ledoux, A., Wasson, G., Sheth, P., Huang, C.: Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker’s handles: results on normal subjects. Med. Eng. Phys. 29(3), 380–389 (2007)CrossRefGoogle Scholar
  3. 3.
    Alzheimer’s Disease International. World Alzheimer Report 2009 (2009)Google Scholar
  4. 4.
    Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P., Robert, P.: Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med. Biol. Eng. Comput. 37, 686–691 (1999)CrossRefGoogle Scholar
  5. 5.
    Auvinet, B., Berrut, G., Touzard, C., Moutel, L., Collet, N., Chaleil, D., Barrey, E.: Reference data for normal subjects obtained with an accelerometric device. Gait Posture 16(2), 124–134 (2002)CrossRefGoogle Scholar
  6. 6.
    Bachmann, C., Gerber, H., Stacoff, A.: Messsysteme, Messmethoden und Beispiele zur instrumentierten Ganganalyse. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 56(2), 29–34 (2008)Google Scholar
  7. 7.
    Bamberg, S., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 12(4), 413–423 (2008)CrossRefGoogle Scholar
  8. 8.
    Beauchet, O., Allali, G., Berrut, G., Hommet, C., Dubost, V., Assal, F.: Gait analysis in demented subjects: interests and perspectives. Neuropsychiatr. Dis. Treat. 4(1), 155–160 (2008)CrossRefGoogle Scholar
  9. 9.
    Beer, J.M., Prakash, A., Mitzner, T.L., Rogers, W.A.: Understanding robot acceptance. Georgia Institute of Technology (2011)Google Scholar
  10. 10.
    Berg, K.: Measuring balance in the elderly: preliminary development of an instrument. Physiother. Can. 41(6), 304–311 (1989)CrossRefGoogle Scholar
  11. 11.
    Bergmann, J.H.M., McGregor, A.H.: Body-worn sensor design: what do patients and clinicians want? Ann. Biomed. Eng. 39(9), 2299–2312 (2011)CrossRefGoogle Scholar
  12. 12.
    Boonstra, M.C., van der Slikke, R.M.A., Keijsers, N.L.W., van Lummel, R.C., de Waal Malefijt, M.C., Verdonschot, N.: The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes. J. Biomech. 39(2), 354–358 (2006)CrossRefGoogle Scholar
  13. 13.
    Bussmann, J., Damen, L., Stam, H.: Analysis and decomposition of signals obtained by thigh-fixed uni-axial accelerometry during normal walking. Med. Biol. Eng. Comput. 38, 632–638 (2000)CrossRefGoogle Scholar
  14. 14.
    Butler, A.A., Menant, J.C., Tiedemann, A.C., Lord, S.R.: Age and gender differences in seven tests of functional mobility. J. Neuroeng. Rehabil. 6, 31 (2009)CrossRefGoogle Scholar
  15. 15.
    Cameron, K., Hughes, K., Doughty, K.: Reducing fall incidence in community elders by telecare using predictive systems. In: Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 30 October–2 November 1997, vol. 3, pp. 1036–1039 (1997)Google Scholar
  16. 16.
    Cao, E., Inoue, Y., Liu, T., Shibata, K.: A sit-to-stand trainer system in lower limb rehabilitation. In: Proceedings of the IEEE/ASME International Advanced Intelligent Mechatronics (AIM) Conference, pp. 116–121 (2011)Google Scholar
  17. 17.
    Celler, B.G., Hesketh, T., Earnshaw, W., Ilsar, E.: An instrumentation system for the remote monitoring of changes in functional health status of the elderly at home. In: Proceedings of the 16th Annual International Conference of the IEEE Engineering Advances: New Opportunities for Biomedical Engineers Engineering in Medicine and Biology Society, pp. 908–909 (1994)Google Scholar
  18. 18.
    Chan, M., Hariton, C., Ringeard, P., Campo, E.: Smart house automation system for the elderly and the disabled. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics Intelligent Systems for the 21st Century, 22–25 October 1995, vol. 2, pp. 1586–1589 (1995)Google Scholar
  19. 19.
    Chao, E.Y.: Justification of triaxial goniometer for the measurement of joint rotation. J. Biomech. 13(12), 989–1006 (1980)CrossRefGoogle Scholar
  20. 20.
    Chen, C.L., Chen, H.C., Wong, M.K., Tang, F.T., Chen, R.S.: Temporal stride and force analysis of cane-assisted gait in people with hemiplegic stroke. Arch. Phys. Med. Rehabil. 82(1), 43–48 (2001)CrossRefGoogle Scholar
  21. 21.
    Chen, M., Huang, B., Xu, Y.: Intelligent shoes for abnormal gait detection. In: Proceedings of the IEEE International Conference on Robotics and Automation ICRA 2008, 19–23 May 2008, pp. 2019–2024 (2008)Google Scholar
  22. 22.
    Chen, Y.-C., Lin, Y.-W.: Indoor RFID gait monitoring system for fall detection. In: Proceedings of the 2nd International Aware Computing (ISAC) Symposium, pp. 207–212 (2010)Google Scholar
  23. 23.
    Chiari, L., Dozza, M., Cappello, A., Horak, F.B., Macellari, V., Giansanti, D.: Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans. Biomed. Eng. 52(12), 2108–2111 (2005)CrossRefGoogle Scholar
  24. 24.
    Cho, C.Y., Kamen, G.: Detecting balance deficits in frequent fallers using clinical and quantitative evaluation tools. J. Am. Geriatr. Soc. 46(4), 426–430 (1998)Google Scholar
  25. 25.
    Clark, R.A., Bryant, A.L., Pua, Y., McCrory, P., Bennell, K., Hunt, M.: Validity and reliability of the nintendo wii balance board for assessment of standing balance. Gait Posture 31(3), 307–310 (2010)CrossRefGoogle Scholar
  26. 26.
    Currie, G., Rafferty, D., Duncan, G., Bell, F., Evans, A.: Measurement of gait by accelerometer and walkway: a comparison study. Med. Biol. Eng. Comput. 30, 669–670 (1992)CrossRefGoogle Scholar
  27. 27.
    Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A., Sharit, J.: Factors predicting the use of technology: findings from the center for research and education on aging and technology enhancement (create). Psychol. Aging 21(2), 333 (2006)CrossRefGoogle Scholar
  28. 28.
    de Bruin, E., Najafi, B., Murer, K., Uebelhart, D., Aminian, K.: Quantification of everyday motor function in a geriatric population. J. Rehabil. Res. Dev. 44, 417–428 (2007)CrossRefGoogle Scholar
  29. 29.
    DeLisa, J., Scientific, U.S. Veterans Health Administration, Technical Publications Section: Gait analysis in the science of rehabilitation. Monograph (United States. Veterans Health Administration. Rehabilitation Research and Development Service). Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development Service. Scientific and Technical Publications Section (1998)Google Scholar
  30. 30.
    Ezer, N., Fisk, A.D., Rogers, W.A.: Attitudinal and intentional acceptance of domestic robots by younger and older adults. In: Stephanidis, C. (ed.) UAHCI 2009, Part II. LNCS, vol. 5615, pp. 39–48. Springer, Heidelberg (2009) Google Scholar
  31. 31.
    Ezer, N., Fisk, A.D., Rogers, W.A.: More than a servant: self-reported willingness of younger and older adults to having a robot perform interactive and critical tasks in the home. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 53, pp. 136–140. SAGE Publications (2009)Google Scholar
  32. 32.
    Fortuny-Guasch, J., Sammartino, P.F., Petit, J.: Radar techniques for human gait automatic recognition. In: Proceedings of the 43rd Annual 2009 International Security Technology Carnahan Conference, pp. 221–226 (2009)Google Scholar
  33. 33.
    Frenken, T.: Technischer Ansatz zur unaufdringlichen Mobilitätsanalyse im Rahmen geriatrischer Assessments. Ph.D. thesis. University of Oldenburg, VDI Verlag, Düsseldorf, January 2013Google Scholar
  34. 34.
    Frenken, T., Gövercin, M., Mersmann, S., Hein, A.: Precise assessment of self-selected gait velocity in domestic environments. In: Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2010)Google Scholar
  35. 35.
    Frenken, T., Lipprandt, M., Brell, M., Wegel, S., Gövercin, M., Steinhagen-Thiessen, E., Hein, A.: Novel approach to unsupervised mobility assessment tests: field trial for aTUG. In: Proceedings of the 6th International Pervasive Computing Technologies for Healthcare (PervasiveHealth) Conference (2012)Google Scholar
  36. 36.
    Frenken, T., Vester, B., Brell, M., Hein, A.: aTUG: fully-automated timed up and go assessment using ambient sensor technologies. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) (2011)Google Scholar
  37. 37.
    Fuerstenberg, K.C., Dietmayer, K.: Object tracking and classification for multiple active safety and comfort applications using a multilayer laser scanner. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 802–807 (2004)Google Scholar
  38. 38.
    Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with kinect. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1964–1967. IEEE (2012)Google Scholar
  39. 39.
    Geisheimer, J.L., Marshall, W.S., Greneker, E.: A continuous-wave (CW) radar for gait analysis. In: Proceedings of the Conference on Signals, Systems and Computers Record of the Thirty-Fifth Asilomar Conference, vol. 1, pp. 834–838 (2001)Google Scholar
  40. 40.
    Gill, T.M., Williams, C.S., Tinetti, M.E.: Assessing risk for the onset of functional dependence among older adults: the role of physical performance. J. Am. Geriatr. Soc. 43(6), 603–609 (1995)Google Scholar
  41. 41.
    Goffredo, M., Carter, J.N., Nixon, M.S.: Front-view gait recognition. In: Proceedings of the 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems BTAS 2008, pp. 1–6 (2008)Google Scholar
  42. 42.
    Greene, B.R., Donovan, A.O., Romero-Ortuno, R., Cogan, L., Ni Scanaill, C., Kenny, R.A.: Quantitative falls risk assessment using the timed up and go test. IEEE Trans. Biomed. Eng. 57(12), 2918–2926 (2010)CrossRefGoogle Scholar
  43. 43.
    Hagler, S., Austin, D., Hayes, T.L., Kaye, J., Pavel, M.: Unobtrusive and ubiquitous in-home monitoring: a methodology for continuous assessment of gait velocity in elders. IEEE Trans. Biomed. Eng. 57(4), 813–820 (2010)CrossRefGoogle Scholar
  44. 44.
    Hausdorff, J.M., Ladin, Z., Wei, J.Y.: Footswitch system for measurement of the temporal parameters of gait. J. Biomech. 28(3), 347–351 (1995)CrossRefGoogle Scholar
  45. 45.
    Health Level Seven International. CDA Release 2. Technical report (2005)Google Scholar
  46. 46.
    Helmer, A., Lipprandt, M., Frenken, T., Eichelberg, M., Hein, A.: 3DLC: a comprehensive model for personal health records supporting new types of medical applications. J. Healthc. Eng. 2(3), 321–336 (2011)CrossRefGoogle Scholar
  47. 47.
    Henriksen, M., Lund, H., Moe-Nilssen, R., Bliddal, H., Danneskiod-Samsøe, B.: Test-retest reliability of trunk accelerometric gait analysis. Gait Posture 19(3), 288–297 (2004)CrossRefGoogle Scholar
  48. 48.
    Holzinger, A., Searle, G., Wernbacher, M.: The effect of previous exposure to technology on acceptance and its importance in usability and accessibility engineering. Univ. Access Inf. Soc. 10(3), 245–260 (2011)CrossRefGoogle Scholar
  49. 49.
    Hornsteiner, C., Detlefsen, J.: Characterisation of human gait using a continuous-wave radar at 24 GHz. Adv. Radio Sci. 6, 67–70 (2008)CrossRefGoogle Scholar
  50. 50.
    Huang, B., Chen, M., Shi, X., Xu, Y.: Gait event detection with intelligent shoes. In: Proceedings of International Conference on Information Acquisition ICIA 2007, 8–11 July 2007, pp. 579–584 (2007)Google Scholar
  51. 51.
    Huitema, R.B., Hof, A.L., Postema, K.: Ultrasonic motion analysis system-measurement of temporal and spatial gait parameters. J. Biomech. 35(6), 837–842 (2002)CrossRefGoogle Scholar
  52. 52.
    Imms, F.J., Edholm, O.G.: Studies of gait and mobility in the elderly. Age Ageing 10(3), 147–156 (1981)CrossRefGoogle Scholar
  53. 53.
    Jang, Y., Shin, S., Lee, J.W., Kim, S.: A preliminary study for portable walking distance measurement system using ultrasonic sensors. In: Proceedings of 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2007, pp. 5290–5293 (2007)Google Scholar
  54. 54.
    Kamen, G., Patten, C., Du, C.D., Sison, S.: An accelerometry-based system for the assessment of balance and postural sway. Gerontology 44(1), 40–45 (1998)CrossRefGoogle Scholar
  55. 55.
    Kerr, K., White, J., Barr, D., Mollan, R.: Standardization and definitions of the sit-stand-sit movement cycle. Gait Posture 2(3), 182–190 (1994)CrossRefGoogle Scholar
  56. 56.
    Kiselev, J., Gövercin, M., Frenken, T., Hein, A., Steinhagen-Thiessen, E., Wegel, S.: A new device for the assessment of gait and mobility with an automated timed up & go (atug): study protocol of an initial validation study. Contemporary Clinical Trials (2012, submitted)Google Scholar
  57. 57.
    Kiss, R.: Comparison between kinematic and ground reaction force techniques for determining gait events during treadmill walking at different walking speeds. Med. Eng. Phys. 32(6), 662–667 (2010)CrossRefGoogle Scholar
  58. 58.
    Knight, H., Lee, J.-K., Ma, H.: Chair Alarm for patient fall prevention based on Gesture Recognition and Interactivity. In: Proceedings of 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2008, 20–25 August 2008, pp. 3698–3701 (2008)Google Scholar
  59. 59.
    Kong, K., Tomizuka, M.: A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Trans. Mechatron. 14(3), 358–370 (2009)CrossRefGoogle Scholar
  60. 60.
    Lai, D.T.H., Wrigley, T.V., Palaniswami, M.: Ultrasound monitoring of inter-knee distances during gait. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2009, pp. 725–728 (2009)Google Scholar
  61. 61.
    Leu, A., Ristic-Durrant, D., Graser, A.: A robust markerless vision-based human gait analysis system. In: Proceedings of 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 415–420 (2011)Google Scholar
  62. 62.
    Liao, H.-F., Mao, P.-J., Hwang, A.-W.: Test-retest reliability of balance tests in children with cerebral palsy. Dev. Med. Child Neurol. 43(3), 180–186 (2001)Google Scholar
  63. 63.
    Liao, T.-Y., Miaou, S.-G., Li, Y.-R.: A vision-based walking posture analysis system without markers. In: Proceedings of the 2nd International Conference on Signal Processing Systems (ICSPS), vol. 3, pp. 254–258 (2010)Google Scholar
  64. 64.
    Lim, D.-W., Kim, D.-H., Shen, L., Kim, H.-M., Kim, S., Yu, H.K.: Stride rate estimation using UWB impulse radar. In: Proceedings of the 3rd Asia-Pacific International Conference on Synthetic Aperture Radar (APSAR), pp. 1–3 (2011)Google Scholar
  65. 65.
    Liu, J., Lockhart, T.E., Jones, M., Martin, T.: Local dynamic stability assessment of motion impaired elderly using electronic textile pants. IEEE Trans. Autom. Sci. Eng. 5(4), 696–702 (2008)CrossRefGoogle Scholar
  66. 66.
    Lombardi, R., Buizza, A., Gandolfi, R., Vignarelli, C., Guaita, A., Panella, L.: Measurement on tinetti test: instrumentation and procedures. Technol. Health Care J. Eur. Soc. Eng. Med. 9(5), 403–416 (2001)Google Scholar
  67. 67.
    Mancini, M., Salarian, A., Carlson-Kuhta, P., Zampieri, C., King, L., Chiari, L., Horak, F.B., et al.: Isway: a sensitive, valid and reliable measure of postural control. J. Neuroengineering Rehabil. 9(1), 59 (2012)CrossRefGoogle Scholar
  68. 68.
    Mancini, M., Zampieri, C., Carlson-Kuhta, P., Chiari, L., Horak, F.B.: Anticipatory postural adjustments prior to step initiation are hypometric in untreated parkinsons disease: an accelerometer-based approach. Eur. J. Neurol. 16(9), 1028–1034 (2009)CrossRefGoogle Scholar
  69. 69.
    Marschollek, M., Goevercin, M., Wolf, K.-H., Song, B., Gietzelt, M., Haux, R., Steinhagen-Thiessen, E.: A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2008, pp. 1319–1322 (2008)Google Scholar
  70. 70.
    Marschollek, M., Nemitz, G., Gietzelt, M., Wolf, K., Meyer zu Schwabedissen, H., Haux, R.: Predicting in-patient falls in a geriatric clinic. Zeitschrift fr Gerontologie und Geriatrie 42, 317–322 (2009)CrossRefGoogle Scholar
  71. 71.
    Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 25(2), R1 (2004)CrossRefGoogle Scholar
  72. 72.
    Mayagoitia, R.E., Lotters, J.C., Veltink, P.H.: Standing stability evaluation using a triaxial accelerometer. In: Proceedings of 18th Annual International Conference of the IEEE Bridging Disciplines for Biomedicine Engineering in Medicine and Biology Society, October 31–November 3 1996, vol. 2, pp. 573–574 (1996)Google Scholar
  73. 73.
    Melenhorst, A.-S., Rogers, W.A., Bouwhuis, D.G.: Older adults’ motivated choice for technological innovation: evidence for benefit-driven selectivity. Psychol. Aging 21(1), 190 (2006)CrossRefGoogle Scholar
  74. 74.
    Menz, H.B., Lord, S.R., Fitzpatrick, R.C.: Age-related differences in walking stability. Age Ageing 32(2), 137–142 (2003)CrossRefGoogle Scholar
  75. 75.
    Montero-Odasso, M., Schapira, M., Soriano, E.R., Varela, M., Kaplan, R., Camera, L.A., Mayorga, L.M.: Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 60(10), 1304–1309 (2005)CrossRefGoogle Scholar
  76. 76.
    Muras, J.: SMOOTH - a system for mobility training at home for people with Parkinson’s disease. Ph.D. thesis, Trinity College Dublin (2010)Google Scholar
  77. 77.
    Najafi, B., Aminian, K., Loew, F., Blanc, Y., Robert, P.A.: Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Trans. Biomed. Eng. 49(8), 843–851 (2002)CrossRefGoogle Scholar
  78. 78.
    Narayanan, M.R., Redmond, S.J., Scalzi, M.E., Lord, S.R., Celler, B.G., Ast, N.H.L.: Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. Eng. 57(3), 534–541 (2010)CrossRefGoogle Scholar
  79. 79.
    Nester, C., Jones, R.K., Liu, A., Howard, D., Lundberg, A., Arndt, A., Lundgren, P., Stacoff, A., Wolf, P.: Foot kinematics during walking measured using bone and surface mounted markers. J. Biomech. 40(15), 3412–3423 (2007)CrossRefGoogle Scholar
  80. 80.
    Organization, W.H., et al.: International classification of functioning disability and health (ICF). resolution WHA 54.21 (2001)Google Scholar
  81. 81.
    Otero, M.: Application of a continuous wave radar for human gait recognition. In: Kadar, I. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5809, pp. 538–548, May 2005Google Scholar
  82. 82.
    Pallejà, T., Teixidó, M., Tresanchez, M., Palacín, J.: Measuring gait using a ground laser range sensor. Sensors 9(11), 9133–9146 (2009)CrossRefGoogle Scholar
  83. 83.
    Pappas, I.P.I., Keller, T., Mangold, S., Popovic, M.R., Dietz, V., Morari, M.: A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. IEEE Sens. J. 4(2), 268–274 (2004)CrossRefGoogle Scholar
  84. 84.
    Pavel, M., Hayes, T., Tsay, I., Erdogmus, D., Paul, A., Larimer, N., Jimison, H., Nutt, J.: Continuous assessment of gait velocity in Parkinson’s disease from unobtrusive measurements. In: Proceedings of the 3rd International IEEE/EMBS Conference on Neural Engineering CNE 2007, 2–5 May 2007, pp. 700–703 (2007)Google Scholar
  85. 85.
    Pavel, M., Hayes, T.L., Adami, A., Jimison, H., Kaye, J.: Unobtrusive assessment of mobility. In: Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS 2006, pp. 6277–6280, August 2006Google Scholar
  86. 86.
    Perez, C., Oates, A., Hughey, L., Fung, J.: Development of a force-sensing cane instrumented within a treadmill-based virtual reality locomotor system. In: Proceedings of the International Conference on Virtual Rehabilitation, pp. 154–159 (2009)Google Scholar
  87. 87.
    Perry, M., Dowdall, A., Lines, L., Hone, K.: Multimodal and ubiquitous computing systems: supporting independent-living older users. IEEE Trans. Inf. Technol. Biomed. 8(3), 258–270 (2004)CrossRefGoogle Scholar
  88. 88.
    Podsiadlo, D., Richardson, S.: The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39(2), 142–148 (1991)Google Scholar
  89. 89.
    Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108, 4–18 (2007)CrossRefGoogle Scholar
  90. 90.
    Ram, S.S., Li, Y., Lin, A., Ling, H.: Doppler-based detection and tracking of humans in indoor environments. J. Franklin Inst. 345(6), 679–699 (2008)CrossRefzbMATHGoogle Scholar
  91. 91.
    Salarian, A., Horak, F.B., Zampieri, C., Carlson-Kuhta, P., Nutt, J.G., Aminian, K.: iTUG, a sensitive and reliable measure of mobility. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 303–310 (2010)CrossRefGoogle Scholar
  92. 92.
    Scanaill, C.N., Carew, S., Barralon, P., Noury, N., Lyons, D., Lyons, G.M.: A review of approaches to mobility telemonitoring of the elderly in their living environment. Ann. Biomed. Eng. 34(4), 547–563 (2006)CrossRefGoogle Scholar
  93. 93.
    Shao, X., Zhao, H., Nakamura, K., Katabira, K., Shibasaki, R., Nakagawa, Y.: Detection and tracking of multiple pedestrians by using laser range scanners. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, IROS 2007, pp. 2174–2179 (2007)Google Scholar
  94. 94.
    Sixsmith, A.J.: An evaluation of an intelligent home monitoring system. J. Telemedicine Telecare 6(2), 63–72 (2000)CrossRefMathSciNetGoogle Scholar
  95. 95.
    Skelly, M.M., Chizeck, H.J.: Real-time gait event detection for paraplegic FES walking. IEEE Trans. Neural Syst. Rehabil. Eng. 9(1), 59–68 (2001)CrossRefGoogle Scholar
  96. 96.
    Smarr, C.-A., Fausset, C.B., Rogers, W.A.: Understanding the potential for robot assistance for older adults in the home environment. Georgia Institute of Technology (2011)Google Scholar
  97. 97.
    Smith, G.E., Ahmad, F., Amin, M.G.: Micro-Doppler processing for ultra-wideband radar data. In: SPIE Defense, Security, and Sensing, pp. 83610L–83610L. International Society for Optics and Photonics (2012)Google Scholar
  98. 98.
    Spehr, J., Gietzelt, M., Wegel, S., Költzsch, Y., Winkelbach, S., Marschollek, M., Gövercin, M., Wahl, F., Haux, R., Steinhagen-Thiessen, E.: Vermessung von Gangparametern zur Sturzprädikation durch Vision- und Beschleunigungssensorik. In: Demographischer Wandel - Assistenzsysteme aus der Forschung in den Markt (AAL 2011), p. 5 (2011)Google Scholar
  99. 99.
    Steen, E.-E., Eichelberg, M., Nebel, W., Hein, A.: A novel indoor localization approach using dynamic changes in ultrasonic echoes. In: Wichert, R., Eberhardt, B. (eds.) Ambient Assisted Living. Advanced Technologies and Societal Change, pp. 61–76. Springer, Heidelberg (2012)Google Scholar
  100. 100.
    Stolze, H., Klebe, S., Baecker, C., Zechlin, C., Friege, L., Pohle, S., Deuschl, G.: Prevalence of gait disorders in hospitalized neurological patients. Mov. Disord. 20(1), 89–94 (2005)CrossRefGoogle Scholar
  101. 101.
    Stone, E., Skubic, M.: Mapping kinect-based in-home gait speed to tug time: a methodology to facilitate clinical interpretation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 57–64 (2013)Google Scholar
  102. 102.
    Stone, E.E., Skubic, M.: Evaluation of an inexpensive depth camera for passive in-home fall risk assessment. In: Proceedings of 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 71–77 (2011)Google Scholar
  103. 103.
    Stone, E.E., Skubic, M.: Passive in-home measurement of stride-to-stride gait variability comparing vision and kinect sensing. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6491–6494. IEEE (2011)Google Scholar
  104. 104.
    Stone, E.-E., Skubic, M.: Passive, in-home gait measurement using an inexpensive depth camera: initial results. In: Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 183–186 (2012)Google Scholar
  105. 105.
    Sutherland, D.H.: The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 14(1), 61–70 (2001)CrossRefMathSciNetGoogle Scholar
  106. 106.
    Sutherland, D.H.: The evolution of clinical gait analysis: Part II Kinematics. Gait Posture 16(2), 159–179 (2002)CrossRefGoogle Scholar
  107. 107.
    Sutherland, D.H.: The evolution of clinical gait analysis part III - kinetics and energy assessment. Gait Posture 21(4), 447–461 (2005)CrossRefGoogle Scholar
  108. 108.
    Tinetti, M.E.: Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 34(2), 119–126 (1986)Google Scholar
  109. 109.
    Tung, J., Gage, W., Zabjek, K., Brooks, D., Maki, D., Mihailidis, A., Fernie, G.R., McIlroy, W.E.: iWalker: a ‘real-world’ mobility assessment tool. In: 30th Canadian Medical and Biological Engineering Society. Canadian Medical & Biological Engineering Society (2007)Google Scholar
  110. 110.
    van Doorn, C., Gruber-Baldini, A.L., Zimmerman, S., Hebel, J.R., Port, C.L., Baumgarten, M., Quinn, C.C., Taler, G., May, C., Magaziner, J., Epidemiology of Dementia in Nursing Homes Research Group: Dementia as a risk factor for falls and fall injuries among nursing home residents. J. Am. Geriatr. Soc. 51(9), 1213–1218 (2003)CrossRefGoogle Scholar
  111. 111.
    Verghese, J., Lipton, R.B., Hall, C.B., Kuslansky, G., Katz, M.J., Buschke, H.: Abnormality of gait as a predictor of non-Alzheimer’s dementia. N. Engl. J. Med. 347(22), 1761–1768 (2002)CrossRefGoogle Scholar
  112. 112.
    Vignaud, L., Ghaleb, A., Le Kernec, J., Nicolas, J.-M.: Radar high resolution range & micro-Doppler analysis of human motions. In: Proceedings of the International RADAR Conference-Surveillance for a Safer World, pp. 1–6 (2009)Google Scholar
  113. 113.
    Virone, G., Noury, N., Demongeot, J.: A system for automatic measurement of circadian activity deviations in telemedicine. IEEE Trans. Biomed. Eng. 49(12), 1463–1469 (2002)CrossRefGoogle Scholar
  114. 114.
    Wahab, Y., Bakar, N.A.: Microsystem based portable shoe integrated instrumentation using ultrasonic for gait analysis measurement. In: Proceedings of the 4th International Conference on Mechatronics (ICOM), pp. 1–4 (2011)Google Scholar
  115. 115.
    Wall, J.C., Bell, C., Campbell, S., Davis, J.: The timed Get-up-and-Go test revisited: measurement of the component tasks. J. Rehabil. Res. Dev. 37(1), 109–113 (2000)Google Scholar
  116. 116.
    Wang, F., Skubic, M., Abbott, C., Keller, J.M.: Body sway measurement for fall risk assessment using inexpensive webcams. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2225–2229 (2010)Google Scholar
  117. 117.
    Wang, Y., Fathy, A.E.: Range-time-frequency representation of a pulse Doppler radar imaging system for indoor localization and classification. In: 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 34–36. IEEE (2013)Google Scholar
  118. 118.
    Weir, R.F., Childress, D.S.: Portable devices for the clinical measurement of gait performance and outcomes. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 3, pp. 1873–1875 (2000)Google Scholar
  119. 119.
    Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Giladi, N., Hausdorff, J.M.: An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol. Meas. 32(12), 2003 (2011)CrossRefGoogle Scholar
  120. 120.
    Whitney, J.C., Lord, S.R., Close, J.C.T.: Streamlining assessment and intervention in a falls clinic using the Timed Up and Go Test and Physiological Profile Assessments. Age Ageing 34(6), 567–571 (2005)CrossRefGoogle Scholar
  121. 121.
    Williamson, R., Andrews, B.J.: Gait event detection for FES using accelerometers and supervised machine learning. IEEE Trans. Rehabil. Eng. 8(3), 312–319 (2000)CrossRefGoogle Scholar
  122. 122.
    Yack, H.J., Berger, R.C.: Dynamic stability in the elderly: identifying a possible measure. J. Gerontol. 48(5), M225–M230 (1993)CrossRefGoogle Scholar
  123. 123.
    Yamada, M., Kamiya, K., Kudo, M., Nonaka, H., Toyama, J.: Soft authentication and behavior analysis using a chair with sensors attached: hipprint authentication. Pattern Anal. Appl. 12, 251–260 (2009)CrossRefMathSciNetGoogle Scholar
  124. 124.
    Yardibi, T., Cuddihy, P., Genc, S., Bufi, C., Skubic, M., Rantz, M., Liu, L., Phillips, C.: Gait characterization via pulse-Doppler radar. In: Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 662–667 (2011)Google Scholar
  125. 125.
    Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J.G., Horak, F.B.: The instrumented timed up and go test: potential outcome measure for disease modifying therapies in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 81(2), 171–176 (2010)CrossRefGoogle Scholar
  126. 126.
    Zampieri, C., Salarian, A., Carlson-Kuhta, P., Nutt, J.G., Horak, F.B.: Assessing mobility at home in people with early Parkinson’s disease using an instrumented Timed Up and Go test. Parkinsonism Relat. Disord. 17(4), 277–280 (2011).
  127. 127.
    Zhu, H.S., Wertsch, J.J., Harris, G.F., Loftsgaarden, J.D., Price, M.B.: Foot pressure distribution during walking and shuffling. Arch. Phys. Med. Rehabil. 72(6), 390–397 (1991)Google Scholar
  128. 128.
    Zijlstra, W.: Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 92, 39–44 (2004)CrossRefGoogle Scholar
  129. 129.
    Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2), 1–10 (2003)CrossRefGoogle Scholar
  130. 130.
    Zubeyde Gurbtiz, S., Melvin, W.L., Williams, D.B.: Comparison of radar-based human detection techniques. In: Proceedings of the Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers ACSSC 2007, pp. 2199–2203 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Melvin Isken
    • 1
  • Thomas Frenken
    • 1
  • Melina Frenken
    • 2
  • Andreas Hein
    • 3
  1. 1.OFFIS Insitute for Information TechnologyOldenburgGermany
  2. 2.Institute of Technical Assistance SystemsJade-University of Applied SciencesOldenburgGermany
  3. 3.Devision Automation and Measurement TechnologyUniversity of OldenburgOldenburgGermany

Personalised recommendations