Visual Object Tracking for the Extraction of Multiple Interacting Plant Root Systems

  • Stefan MairhoferEmail author
  • Craig J. Sturrock
  • Malcolm J. Bennett
  • Sacha J. Mooney
  • Tony P. Pridmore
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)


We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by a greyscale intensity distribution model to identify object boundaries in image cross-sections. Root objects are followed through the data volume, while updating the tracker’s appearance models to adapt to changing intensity values. In the presence of multiple root systems, multiple trackers can be used, but need to distinguish target objects from one another in order to correctly associate roots with their originating plants. Since root objects are expected to exhibit similar greyscale intensity distributions, shape information is used to constrain the evolving level set interfaces in order to lock trackers to their correct targets. The proposed method is tested on root systems of wheat plants grown in soil.


Multiple object tracking Root system recovery Plant interaction X-ray micro computed tomography 


  1. 1.
    Aykac, D., Hoffman, E., McLennan, G., Reinhardt, J.: Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Transactions on Medical Imaging 22(8), 940–950 (2003)CrossRefGoogle Scholar
  2. 2.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, Í., Chapeau-Blondeau, F.: On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture 82, 122–127 (2012)CrossRefGoogle Scholar
  4. 4.
    Chopp, D.L.: Computing minimal surfaces via level set curvature flow. Journal of Computational Physics 106(1), 77–91 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Clark, R.T., MacCurdy, R.B., Jung, J.K., Shaff, J.E., McCouch, S.R., Aneshansley, D.J., Kochian, L.V.: Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiology 156(2), 455–465 (2011)CrossRefGoogle Scholar
  6. 6.
    Crowell, S., Falcao, A.X., Shah, A., Wilson, Z., Greenberg, A.J., McCouch, S.R.: High-resolution inflorescence phenotyping using a novel image analysis pipeline, panorama. Plant Physiology (2014)Google Scholar
  7. 7.
    Flasque, N., Desvignes, M., Constans, J.M., Revenu, M.: Acquisition, segmentation and tracking of the cerebral vascular tree on 3D magnetic resonance angiography images. Medical Image Analysis 5(3), 173–183 (2001)CrossRefGoogle Scholar
  8. 8.
    Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Transactions on Computers C–21(2), 195–201 (1972)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Heeraman, D.A., Hopmans, J.W., Clausnitzer, V.: Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant and Soil 189, 167–179 (1997)Google Scholar
  10. 10.
    Hinsinger, P., Gobran, G.R., Gregory, P.J., Wenzel, W.W.: Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist 168(2), 293–303 (2005)CrossRefGoogle Scholar
  11. 11.
    Kaestner, A., Schneebeli, M., Graf, F.: Visualizing three-dimensional root networks using computed tomography. Geoderma 136(12), 459–469 (2006)CrossRefGoogle Scholar
  12. 12.
    Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1805–1819 (2005)CrossRefGoogle Scholar
  13. 13.
    Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory 37(1), 145–151 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lontoc-Roy, M., Dutilleul, P., Prasher, S.O., Han, L., Brouillet, T., Smith, D.L.: Advances in the acquisition and analysis of CT scan data to isolate a crop root system from the soil medium and quantify root system complexity in 3-D space. Geoderma 137(12), 231–241 (2006)CrossRefGoogle Scholar
  15. 15.
    Lynch, J.P.: Root architecture and plant productivity. Plant Physiology 109(1), 7–13 (1995)MathSciNetGoogle Scholar
  16. 16.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  17. 17.
    Meijering, E.: Neuron tracing in perspective. Cytometry Part A 77A(7), 693–704 (2010)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Meyer, F.: Contrast features extraction. SPIE Milestone Series 127, 139–145 (1996)Google Scholar
  19. 19.
    Mooney, S.J., Pridmore, T.P., Helliwell, J., Bennett, M.J.: Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil. Plant and Soil 352, 1–22 (2012)CrossRefGoogle Scholar
  20. 20.
    Perret, J.S., Al-Belushi, M.E., Deadman, M.: Non-destructive visualization and quantification of roots using computed tomography. Soil Biology and Biochemistry 39(2), 391–399 (2007)CrossRefGoogle Scholar
  21. 21.
    Pierret, A., Capowiez, Y., Moran, C.J., Kretzschmar, A.: X-ray computed tomography to quantify tree rooting spatial distributions. Geoderma 90(34), 307–326 (1999)CrossRefGoogle Scholar
  22. 22.
    Price, C.A., Symonova, O., Mileyko, Y., Hilley, T., Weitz, J.S.: Leaf extraction and analysis framework graphical user interface: Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology 155(1), 236–245 (2011)CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, A.: Connectivity in digital pictures. Journal of the ACM 17(1), 146–160 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Rosin, P.L.: Unimodal thresholding. Pattern Recognition 34(11), 2083–2096 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 2001 Proceedings of the Third International Conference on3-D Digital Imaging and Modeling, pp. 145–152 (2001)Google Scholar
  26. 26.
    Schenk, H.J.: Root competition: beyond resource depletion. Journal of Ecology 94(4), 725–739 (2006)CrossRefGoogle Scholar
  27. 27.
    Sethian, J.A.: Level set techniques for tracking interfaces: Fast algorithms, multiple regions, grid generation and shape/character recognition. In: Proceedings of the International Conference on Curvature Flows and Related Topics, Trento, Italy, pp. 215–231 (1994)Google Scholar
  28. 28.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.. on Applied and Computational Mathematics, 2nd edn. Cambridge University Press (1999)Google Scholar
  29. 29.
    Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman and Hall (1993)Google Scholar
  30. 30.
    Sonka, M., Park, W., Hoffman, E.A.: Rule-based detection of intrathoracic airway trees. IEEE Transactions on Medical Imaging 15(3), 314–326 (1996)CrossRefGoogle Scholar
  31. 31.
    Trachsel, S., Kaeppler, S., Brown, K., Lynch, J.: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil 341(1–2), 75–87 (2011)CrossRefGoogle Scholar
  32. 32.
    Tschirren, J., Hoffman, E., McLennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Transactions on Medical Imaging 24(12), 1529–1539 (2005)CrossRefGoogle Scholar
  33. 33.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing 2(2), 176–201 (1993)CrossRefGoogle Scholar
  34. 34.
    Wilson, D.L., Noble, J.A.: An adaptive segmentation algorithm for time-of-flight MRA data. IEEE Transactions on Medical Imaging 18(10), 938–945 (1999)CrossRefGoogle Scholar
  35. 35.
    Zappala, S., Helliwell, J.R., Tracy, S.R., Mairhofer, S., Sturrock, C.J., Pridmore, T., Bennett, M., Mooney, S.J.: Effects of X-ray dose on rhizosphere studies using X-ray computed tomography. PloS one 8(6), e67250 (2013)CrossRefGoogle Scholar
  36. 36.
    Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of computation 74(250), 603–628 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Mairhofer
    • 1
    • 3
    Email author
  • Craig J. Sturrock
    • 1
    • 2
  • Malcolm J. Bennett
    • 1
    • 2
  • Sacha J. Mooney
    • 1
    • 2
  • Tony P. Pridmore
    • 1
    • 3
  1. 1.Centre for Plant Integrative BiologyUniversity of NottinghamNottinghamUK
  2. 2.School of BiosciencesUniversity of NottinghamNottinghamUK
  3. 3.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations