Advertisement

3-D Histogram-Based Segmentation and Leaf Detection for Rosette Plants

  • Jean-Michel Pape
  • Christian Klukas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

Recognition and segmentation of plant organs like leaves is one of the major challenges in digital plant phenotyping. Here we present a 3-D histogram-based segmentation and recognition approach for top view images of rosette plants such as Arabidopsis thaliana and tobacco. Furthermore a euclidean-distance-map-based method for the detection of leaves and the corresponding plant leaf segmentation method were developed. An approach for the detection of optimal leaf split points for the separation of overlapping leaf segments was created. We tested and tuned our algorithms for the Leaf Segmentation Challenge (LSC). The results demonstrate that our method is robust and handles demanding imaging situations and different species with high accuracy.

Keywords

3-D Histogram thresholding Euclidean distance map Graph analysis Leaf counting Leaf segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, S., Aggarwal, D.: Color image segmentation using cielab color space using ant colony optimization. International Journal of Computer Applications 29(9), 28–34 (2011)CrossRefGoogle Scholar
  2. 2.
    Bours, R., Muthuraman, M., Bouwmeester, H., van der Krol, A.: Oscillator: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation. Plant methods 8(1), 29 (2012)CrossRefGoogle Scholar
  3. 3.
    Cerutti, G., Tougne, L., Vacavant, A., Coquin, D.: A parametric active polygon for leaf segmentation and shape estimation. In: Bebis, G., et al. (eds.) Advances in Visual Computing. LNCS, vol. 6938, pp. 202–213. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    De Vylder, J., Vandenbussche, F., Hu, Y., Philips, W., Van Der Straeten, D.: Rosette tracker: an open source image analysis tool for automatic quantification of genotype effects. Plant physiology 160(3), 1149–1159 (2012)CrossRefGoogle Scholar
  5. 5.
    Green, J.M., Appel, H., Rehrig, E.M., Harnsomburana, J., Chang, J.F., Balint-Kurti, P., Shyu, C.R.: Phenophyte: a flexible affordable method to quantify 2d phenotypes from imagery. Plant methods 8(1), 45 (2012)CrossRefGoogle Scholar
  6. 6.
    Henderson, A., Ahrens, J., Law, C.: The ParaView Guide. Kitware, Clifton Park (2004)Google Scholar
  7. 7.
    Ispiryan, R., Grigoriev, I., zu Castell, W., Schffner, A.R.: A segmentation procedure using colour features applied to images of arabidopsis thaliana. Functional Plant Biology 40, 1065–1075 (2013)CrossRefGoogle Scholar
  8. 8.
    Klukas, C., Chen, D., Pape, J.M.: Integrated analysis platform: An open-source information system for high-throughput plant phenotyping. Plant physiology 165(2), 506–518 (2014)CrossRefGoogle Scholar
  9. 9.
    Kurugollu, F., Sankur, B., Harmanci, A.E.: Color image segmentation using histogram multithresholding and fusion. Image and vision computing 19(13), 915–928 (2001)CrossRefGoogle Scholar
  10. 10.
    Minervini, M., Abdelsamea, M.M., Tsaftaris, S.A.: Image-based plant phenotyping with incremental learning and active contours. Ecological Informatics (2013)Google Scholar
  11. 11.
    Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.: Annotated image datasets of rosette plants. Tech. rep. (2014). http://juser.fz-juelich.de/record/154525
  12. 12.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.: Fiji: an open-source platform for biological-image analysis. Nature methods 9(7), 676–682 (2012)CrossRefGoogle Scholar
  13. 13.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W., Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., et al.: 671 nih image to imagej: 25 years of image analysis. Nature methods 9(7) (2012)Google Scholar
  14. 14.
    Tessmer, O.L., Jiao, Y., Cruz, J.A., Kramer, D.M., Chen, J.: Functional approach to high-throughput plant growth analysis. BMC systems biology 7(Suppl 6), S17 (2013)CrossRefGoogle Scholar
  15. 15.
    Valliammal, N., Geethalakshmi, S.: Leaf image segmentation based on the combination of wavelet transform and k means clustering. International Journal of Advanced Research in Artificial Intelligence 1(3), 37–43 (2012)CrossRefGoogle Scholar
  16. 16.
    Walter, A., Scharr, H., Gilmer, F., Zierer, R., Nagel, K.A., Ernst, M., Wiese, A., Virnich, O., Christ, M.M., Uhlig, B., et al.: Dynamics of seedling growth acclimation towards altered light conditions can be quantified via growscreen: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytologist 174(2), 447–455 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular GeneticsLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations